UniTSyn: A Large-Scale Dataset Capable of Enhancing the
Prowess of Large Language Models for Program Testing Noyce Symposium 2024

Yifeng He, Jiabo Huang, Yuyang Rong, Yiwen Guo, Ethan Wang, Hao Chen
UC Davis Berkeley UCDAVIS UClI U(‘SF UC SANTA BARBARA

UNIVERSITY OF CALIFORNIA - [njversity of California, Irvine University of California
o

UNIVERSITY

UNIVERSITY
CALIFORNIA

CALIFORNIA

Methods

Project Statement

The remarkable capability of large language 1. We download open-source software repositories and extract their unit tests. 2. We designed a flexible, unified static analyzer to find calls to focal
models (LLMs) in generating high-quality code functions from the unit tests, which decreases the complexity of performing call analysis for each language. We integrated the Language Server
has drawn increasing attention in the software Protocol (LSP) into the dataset-building process to harness its language extensibility and call-definition matching ability. 3. We store the aligned
testing community. However, existing code function-level focal-test pairs as training data.

LLMs often demonstrate unsatisfactory

capabilities in generating accurate, complete . L
Pabll 5 5 P ' Focal-test pair alignment

tests since they were trained on code snippets O

Language server based backend

collected without differentiating between code

: source code language server
for testing and for other purposes. u guage serv

: textDocument/
Static call defintion -% clangd | —
lysi —_— JSON
(-] =
frontend
C-C—

Open source
software

UniTSyn

repositories functions dataset

Project Goals

In this paper, we present a large-scale
dataset, UniTSyn, which can enhance LLMs
for Unit Test Synthesis. Associating tests with
the tested functions is crucial for LLMs to

infer the expected behavior and the logic RESUItS
paths to be verified. By leveraging Language "
Server Protocol, UniTSyn achieves the Model 7/Params Py C++4 Java JS Go = Avg «0 | @Baseline mUnpaired # Paired
challenging goal of collecting focal-test pairs CodeT5p 770M 306 337 269 371 329 322 55 RQ 3: Training with
without per-project execution setups or per- Ct:::deGen2 1.0B 340 407 241 305 36.1 33.1 S function-level aligned
|anguage heuristics, which tend to be frag”e WizardCoder 1.0B 36.8 439 28.7 31.3 47.7 37.7 §45 focal-test pairs
and difficult to scale. Containing 2.7 million InCoder L35 342 335 226 244315 29.2 > | i
e oot) | p ’ SantaCoder 11B 362 347 365 306 315 33. 840 - Increases assertion
ocal-test pairs across Ttive mainstream CAT-LM! 27B 375 316 344 292 369 339 35 [% accuracy in all five
programming languages, it can enhance the UniTester’ (Ours) 1.1B 52,5 55.1 48.8 41.7 59.7 515 30 - } : i - languages.
test generation ability of LLMs. Our research 55 1 o
guestions are: Model Python CA+ Java Javascript Go Python C++ Java JavaScript Go Overall
ode #Pass Line #Pass Line #Pass Line #Pass Line #Pass Stmt
65
1. How accurate are the test cases CodeT5p 100 572 07 043 403 422 49 207 17 0.73 <o | ©Baseline ®WMono 7 Multi RQ 4: For Python, the
generated by LLMs? CodeGen? 41 241 11.6 7.07 523 512 485 27.65 19.2 10.99) I | del
2. How many of the generated tests are WizardCoder 16.1 939 3.7 224 477 562 92 550 07 0.42 55 - monaolingual moaet
' , InCoder 30 176 0.0 000 150 15 05 029 13 0.78 S 50 - demonstrated superior
complete: SantaCoder 45 262 49 299 501 474 59 353 0.7 043 2 45 capability in assertion
3. Is it necessary to train LLMs with pairwise CAT-LMT 359 1951 00 000 09 007 92 453 00 0.00 = - = th
focal and test functions? UniTester! (OLII'S) 41.2 20.71 28.1 13.39 103.1 10.78 5b3.3 2759 36.0 12.39 E 40 - ? accuracy Or O er
. : 35 S
4. What are the effects of training with ‘0 2 & ?‘ Iang?[uagter]s W'thlt_SIFr'Cterl
- . - 5 K 2 syntax e multiiingua
multilingual testing code? . - - % %% o 2B R
RQ 1 & 2: Our model trained on our dataset achieves the 05 model achieves better

best assertion accuracy and branch/statement coverage. Python Ct+ Java JavaSeript — Go Overall .\ e

	Slide 1: UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing Yifeng He, Jiabo Huang, Yuyang Rong, Yiwen Guo, Ethan Wang, Hao Chen UC Davis

