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Methods

Project Statement

The remarkable capability of large language 1. We download open-source software repositories and extract their unit tests. 2. We designed a flexible, unified static analyzer to find calls to focal
models (LLMs) in generating high-quality code functions from the unit tests, which decreases the complexity of performing call analysis for each language. We integrated the Language Server
has drawn increasing attention in the software Protocol (LSP) into the dataset-building process to harness its language extensibility and call-definition matching ability. 3. We store the aligned
testing community. However, existing code function-level focal-test pairs as training data.

LLMs often demonstrate unsatisfactory

capabilities in generating accurate, complete . L
Pabll 5 5 P ' Focal-test pair alignment

tests since they were trained on code snippets O

Language server based backend

collected without differentiating between code

: source code  language server
for testing and for other purposes. u guage serv

: textDocument/
Static call defintion -% clangd | —
lysi —_— JSON
(-] =
frontend
C-C—

Open source
software

UniTSyn

repositories functions dataset

Project Goals

In this paper, we present a large-scale
dataset, UniTSyn, which can enhance LLMs
for Unit Test Synthesis. Associating tests with
the tested functions is crucial for LLMs to

infer the expected behavior and the logic RESUItS
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