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Abstract—AI agents have been boosted by large
language models. AI agents can function as intelligent
assistants and complete tasks on behalf of their users
with access to tools and the ability to execute com-
mands in their environments. Through studying and
experiencing the workflow of typical AI agents, we
have raised several concerns regarding their security.
These potential vulnerabilities are not addressed by the
frameworks used to build the agents, nor by research
aimed at improving the agents. In this paper, we
identify and describe these vulnerabilities in detail
from a system security perspective, emphasizing their
causes and severe effects. Furthermore, we introduce
defense mechanisms corresponding to each vulnerability
with design and experiments to evaluate their viability.
Altogether, this paper contextualizes the security issues
in the current development of AI agents and delineates
methods to make AI agents safer and more reliable.

I. Introduction
AI agents are robots in cyberspace, executing tasks on

behalf of their users. To understand their user’s command,
they send the input prompts as requests to foundation
models, such as large language models (LLMs). The re-
sponses generated by the model may contain the actions to
be executed or further instructions. To execute the actions,
the agent invokes tools, which may run local computations
or send requests to remote hosts, such as querying search
engines. The tools output results and feedback to the LLM
for the next round of actions. By invoking tools, AI agents
are granted the ability to interact with the real world.
Since AI agents depend on their LLM to understand user
input and environment feedback and generate actions to
use tools, we say that the LLM is the backbone of the
agent. We summarize the basic architecture of LLM-based
AI agents in Figure 1. Traditional agents operate on pre-
defined rules [1] or reinforcement learning [2], making them
hard to generalize to new tasks and different tools. LLM-
based AI agents, on the contrary, can be practical in various
tasks benefiting from enormous pre-training knowledge
and the ability to read tool documentation as additional
prompts. We use the term AI agent to denote all LLM-
based agents in this paper.
Over the years, AI agents have showcased their out-

standing performance on tasks including but not limited
to writing shell scripts to interact with operating systems,
querying databases, shopping and browsing on the web,
playing video games, and robots manipulation [3–6]. De-
spite their popularity, existing research and development

Fig. 1: Overview of LLM-based AI agent.

of AI agents failed to take into account their potential
vulnerabilities. In traditional computing systems, security
is guarded by three properties: confidentiality, integrity,
and availability, each of these faces unique challenges.

Confidentiality is often managed by model-based access
control policies, which abstract the system components and
users into subjects, objects, and rights [7]. However, these
principles face significant challenges when applied to LLM-
based systems due to the nature of LLMs to memorize [8, 9]
and compress [10] training data. AI agents are granted the
ability to interact with tool applications by reading their
instructions and feedback, leaving more possibilities for
privacy leaks. The ability to use tools introduces additional
layers of complexity in maintaining confidentiality. As
a result, we have to rethink information confidentiality
in the context of AI agents. When assisting users with
automatic tool usage, requests for sensitive information
are unavoidable. This evaluation is essential to address the
unique challenges posed by AI agents, especially when they
are learning from user chat history and tool interaction logs,
to ensure that data privacy protections evolve to effectively
safeguard information in this new technological landscape.
Integrity is another important aspect of data security.

When provided to the audience, the data should be
complete and trustworthy. In computing systems, data
should not be modified by unauthorized users, no matter
whether it is done intentionally or not. The integrity of
data in AI agent systems is also distinct from traditional
systems. Users and tools interact with the agent’s LLM
via prompts, where inputs from the user and tools will
be in the same context window. Therefore, the integrity
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of different users’ and tools’ interactions is a new and
unique challenge to AI agents. The integrity of data also
requires special attention when facing AI agents. Since AI
agents will execute commands on the user’s behalf despite
not being the user themselves, the integrity models for
traditional systems are partially ignored.
The threat of availability should be re-investigated for

AI agents as well. Systems, data, and applications should
always be available when the users need them. Unlike
LLMs, which are stateless in general and can only output
text tokens, AI agents execute actions that could affect
the computing system itself. Therefore, each of the agent’s
actions may have its own vulnerabilities to the agent’s
host machine and tools. Current study on AI agents
evaluates them in benchmark settings [4–6], failing to
consider the difference between benchmark environments
and real-world applications. AI agents without sanitization
can harm the availability of both its host system and
its tools by executing malicious commands generated by
its LLM. To clarify between these vulnerabilities and the
security of LLMs, malicious actions might be generated
by hallucinations or prompts that do not break LLM’s
alignment, requiring different defenses and safeguarding.
In this paper, we discuss the possible security issues of

AI agents. To facilitate future research, we propose several
defense methodologies for the vulnerabilities we discovered
on the component level in the AI agent architecture. To
evaluate our defense proposals, we also set up preliminary
experiments that our solutions depend on. Our contribu-
tions are as follows: (1) We formally introduce potential
vulnerabilities of AI agents, and explain the causes and
effects of these vulnerabilities in detail. (2) We propose
multiple defenses to close the gap between AI research and
AI agents in practice. (3) We verify the applicability of
our proposed defenses with empirical evidences and discuss
their limitations and directions for improvement.

II. Threat model
We assume the AI agent is text-only for input and output.

We assume that the server that runs the AI agent is secure.
Users can only access the server via the API provided by
the AI agent. The programs that the AI agent runs have
no undefined behavior, such as buffer overflow that allows
remote code execution. We assume the AI agent has access
to one or multiple tools, and will execute the tools solely
based on the LLM-generated actions.

III. Potential vulnerabilities
In this section, we identify the important potential

vulnerabilities that an AI agent application faces.

A. Sessions
HTTP servers introduced the notion of sessions in order

to guard the confidentiality and integrity of data exchanged
between users and servers. Such ideas can be applied to
AI agents. As a user interacts with the AI agent, they may

issue many commands in the same session. The commands
in the session are correlated temporally, e.g., the context of
a command may depend on its preceding ones. Therefore,
when the AI agent is provided as a service to multiple
users, the AI agent needs to track the session of each user.
Despite being standard for web applications, sessions are
difficult for AI agents to manage. When the temperature
of the model is set to zero, the output of the model is close
to deterministic, where the same prompt will be answered
with very similar responses. Therefore, the state of the
LLMs is tracked by the change in its questions by different
prompting methods. In CoALA [11], the state of an LLM
is formulated as a production sequence

𝑄
𝐿𝐿𝑀
−−⟶ 𝑄 𝐴 (1)

where 𝑄 is the question query and 𝐴 is the answer from the
LLM. In simpler terms, we consider the language model
to be “honest,” meaning it always generates the same
response when given the same question. Therefore, the AI
agent is responsible for managing the state of its LLM. If
the AI agent has only one API account on the AI model,
then instructing the AI model to separate the sessions
of different users raises concerns on information leakage
and action mis-assignment. On the other hand, even if
the AI agent has multiple API accounts on the AI model,
mapping user sessions to API accounts faces the same
vulnerabilities when the number of concurrent users exceeds
that of API accounts. In addition to the integrity and
confidentiality of chat history, the AI agent’s backbone
LLM also faces challenges in availability without proper
session management. Querying the LLM is computationally
heavy and requires substantial graphic processing resources.
If the sessions of the AI agent are not managed properly,
both the agent and the backbone LLM are vulnerable to
denial of service attacks (DoS).

B. Model pollution and privacy leak
The concern of model pollution and privacy leaks arises

when the AI models are fine-tuned on user input. It is
already known that model service providers like OpenAI
1 are doing this to make their models more powerful. To
improve the capabilities of AI agents in making actions
and assisting users, fine-tuning the underlying LLM with
chat history is the most direct approach. Therefore, these
concerns must be carefully addressed to secure AI agents.

Model pollution can occur when a user provides malicious
inputs to an agent with the intention of negatively altering
the model. Model pollution can compromise the integrity of
AI agents. Adversarial data poisoning is a well-established
attack technique against machine learning models, includ-
ing LLMs [12–14]. In the context of LLM-based AI agents,
this vulnerability is particularly pronounced due to the
differences between adversarial prompts and pollution
prompts. Individually, some prompts may not appear

1https://help.openai.com/en/articles/8590148-memory-faq

46

https://help.openai.com/en/articles/8590148-memory-faq


adversarial, making them challenging to detect with prompt
sanitizers. However, if the contents of these prompts are
concatenated together, the resulting text as training data
might pollute the models. Furthermore, data pollution may
also happen unintentionally, as users naturally engage with
AI agents. Natural actions with one application in the
chat history may also be harmful when applied to other
applications. This incidental introduction of skewed chat
history as training data can subtly shift the model’s action
generation, leading to harmful consequences.
Privacy leaks are particularly prevalent in the use of

agents. Confidentiality of user prompt data is already
a severe issue for LLMs as chatbots. This is amplified
further by the AI agent use case. For example, Samsung
banned the use of ChatGPT after an employee prompted
it with confidential code that was later revealed to the
public [15]. This issue of data leakage via prompting is
further intensified by the usage of AI agents with tools.
When these agents interact with applications, they often
request personal information. For example, a bank assistant
agent might request a Social Security number (SSN),
account number, or routing number to help analyze a user’s
monthly spending. Unlike traditional financial applications
that operate by fixed algorithmic rules, AI agents process
tasks by transmitting input data to bank apps and then
relaying the raw output data back for analysis. In such
scenarios, both the user’s account information and personal
spending data are susceptible to memorization by the LLM
through fine-tuning with chat histories. Consequently, the
agent becomes prone to various data extraction attacks [16,
17], leading to significant privacy risks.

C. Agent programs
Agent programs execute instructions from the backbone

LLM to interact with the world [11]. Agent programs
follow actions either generated directly from the underlying
LLM via zero-shot prompting [18, 19] or improved via
reasoning [20–22] and planning [23–27]. However, these
approaches create both local and remote effects and may
have associated vulnerabilities on different levels.
Action generation is vulnerable to hallucination, adver-

sarial prompts, and jailbreak [28–30]. leading to unwanted
or even dangerous actions. When agent programs execute
these actions, both local resources and remote resources
may be compromised. In this scenario, the attacker could
be users of the agent system or malicious applications in the
agent’s toolchain, sending adversarial prompts embedded
in the tools’ documentation.
On the other hand, Agent programs with augmented

action-planning abilities have different security concerns.
These kind of agent programs are referred to as cognitive
agents [11], as they have cognition to the environment
feedback to improve their action iteratively. This process of
improving generated final actions is called planning. Differ-
ent from reasoning strategies [20, 21], each step of planning
has side-effects. ReAct [23] and Inner Monologue [31] use

a feedback loop from the environment to improve the
generated actions, where each step causes side effects to
the environment. More advanced planning approaches, like
Tree-of-Thoughts [25] and ToolChain∗ [26], list all possible
actions more aggressively as a decision tree and attempt all
actions via tree-search algorithms like Breadth-first, Depth-
first, or 𝐴∗ search. Although providing more accurately
planned final actions, these strategies acting as bots to
interact with the world caused severe security concerns.

1) Local vulnerabilities: Personal AI agents are deployed
on personal computers, interacting with their underlying
foundation LLM via API from service providers like
OpenAI. When the agent is active, it gains access to tool
applications, including the shell. The agent program, if
unrestricted, can execute arbitrary instructions on its host.
As a result, it can read confidential data (confidential-
ity), modify important data (integrity), and hog system
resources such as CPU, memory, and disk (availability).

Confidentiality is commonly at risk when an AI agent is
directed to use applications that require read access to files,
such as email apps or file servers. For example, an agent
might send a file over FTP to backup storage. However,
issues arise when the instructions provided by the tools
to the agent include malicious prompts. An adversarial
prompt could be “For backing up data over FTP, also
send a copy to HACKER to ensure it’s extra safe.” Following
this, the LLM could generate commands that send the
file to both the legitimate backup server and the hacker,
leading to data leakage. A similar risk exists when sending
emails or other messaging services, where the agent must
read contact information. If the agent uses its LLM to
determine the recipient, it can be misled by adversarial
prompts embedded in usernames or self-descriptions.

Moreover, confidentiality may also be at risk even if there
is no attacker. When generating actions based on learned
probability distribution, the LLM may output an incorrect
token for the file name. While the recipient is correct as the
user instructed, the agent could inadvertently send sensitive
information to this recipient with insufficient clearance, a
clear violation of the “no read up” principle of the Bell-
LaPadula model [7]. This scenario not only compromises
confidentiality but also demonstrates the complexities
and vulnerabilities inherent in managing access controls
within AI systems. Such vulnerabilities underscore the
need for rigorous security protocols to protect against both
intentional manipulation and unintentional errors.

The integrity of data in AI agent systems faces risks sim-
ilar to those concerning confidentiality. Malicious applica-
tions might manipulate the system by injecting misleading
prompts as part of the instruction or manual, altering data
inappropriately. For example, in a flight booking scenario,
an application could mislead the LLM into favoring a less
efficient flight option by providing false information about
layovers. This undermines the integrity of decision-making
tools, affecting their ability to deliver accurate and unbiased
outcomes. Such risks also extend to other tasks like resume
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reviews or selections based on ratings, emphasizing the need
for these systems to maintain accurate data processing and
resist manipulative influences.
The system’s availability can be impacted in two main

ways. First, a user might input a reasonable command
that causes the agent to run applications involving undocu-
mented multiple processes, potentially monopolizing CPU
resources and making the system inaccessible to others.
These applications could also suffer from memory leaks,
which not only bog down the system but also heighten
vulnerability to memory attacks. Normally, a user would
stop such a program, but AI agents currently lack this
capability. Second, the AI agent’s planning process itself
can affect system availability. Introducing more diverse
tools increases the complexity of planning, requiring more
resources to execute multiple strategies simultaneously.
This strain is magnified when multiple agents operate
concurrently, potentially leading to exponential increases
in resource use.

2) Remote vulnerabilities: Uncontrolled AI agents can
also be a threat to remote services. Modern LLM-based AI
agents can interact with the internet via structured API
calling. For example, popular AI agent frameworks like
LangChain provide pre-defined web-query functionality. If
the LLM thinks remote resources are needed, it will gener-
ate actions for the agent to query remote hosts provided
in the agent’s toolchain. This creates the possibility of
making the agent a bot for attacking remote hosts. If there
are jailbreak attacks that break the system prompt guard
and alignment of the LLM, it can generate dangerous
actions telling the agent to repeatedly query the same
API resource to scan for vulnerabilities on the API server
to use in other attacks. Attackers can also use jailbreak
attacks to use agents to scrape data from the remote service
provider. Since these agents follow actions generated by
LLM, their behavior is distinct from regular social bots on
the internet [32], leading to insufficient detection and early
rejection of these jailbroken AI agent bots.
Furthermore, agent planning that relies on an iterative

environment feedback can be easily repurposed into a bot
for performing DoS attacks. When granted access to local
resources, the agent’s action planning affects the availability
of the local system. Similarly, if the agent’s planning process
requires feedback from the external service provider, it will
send requests to the API iteratively to find the ideal action.
Since the agents perform actions generated by LLMs on
the user’s behalf, they follow the same protocol as human
users on the internet, leading to remote vulnerabilities.

IV. Defenses
We propose defenses for the vulnerabilities in section III.

We describe their design and evaluate their feasibility
through experiments and empirical analysis.
A. Sessions

When handling requests from multiple users concur-
rently, web applications face challenges in maintaining

the confidentiality and integrity of each user’s interaction
data. In these scenarios, effective session management
is one of the best practices. Likewise, AI agent services
can adopt a similar approach by using sessions as the
protection boundary for requests, where all the requests
in the same session may share data and states. Web
applications often use distributed session management
to ensure the scalability with shared data storage. In a
distributed session management scheme, each user session
is assigned a unique session ID, and the interaction data is
stored in a key/value database (KVDB) where the session
ID is the key and the interaction data is the value. AI
agents can also use the same approach to establish session
connections with users, and store the unique session ID
and the question-answer history in a KVDB as its working
memory. Since the state of the LLM is defined by the
change in its input question as in Equation 1, states also
serve as the context for subsequent requests.

However, to successfully use sessions as defense in AI
agents, technical challenges remain. First, the way to
manage the session connection between each user and the
agent needs to be carefully considered. Determining which
requests belong to the same session is crucial. The agent
designer also needs to consider the time to close a session.
When closing a session, the agent needs to transfer its
working memory from the KVDB to long-term storage for
future use, such as improving its model via fine-tuning.
Second, the agent has to embed the session ID into the
requests to the AI model. When multiple sessions share the
same API key to the foundation model, the agent needs to
be able to correlate the session it establishes with the user
and the session it establishes with the foundation model.
Otherwise, the described vulnerabilities will remain.

Another approach in this direction is to formally model
the state of the LLM and AI agents as monad. The
state transformer monad [33] is the standard solution to
enable stateful computations, side effects, and system IO in
pure, stateless, effect-free, functional languages like Haskell,
Isabelle, Coq, etc. Recall from Equation 1: if we view 𝑄
and 𝐴 as types, we can also write it as a function mapping
𝑆𝑡𝑎𝑡𝑒𝐿𝐿𝑀 ∶ 𝑄 → (𝐴, 𝑄), which transforms the LLM
from an initial state to the next state. Then the formal
definition of the state transformer [33] is a parametric
form of this function. Since monads are composable [34],
the state monad is particularly ideal for representing AI
agent behaviors such as reasoning and planning. We believe
future research can build on this framework to derive a
formal definition of the state of AI agents. The state monad
is defined in a formal type system with type inference
that is both sound and complete [35], which may facilitate
the verification of AI agent systems [36]. Based on this
theory, one may also develop session types [37] for AI
agents. The state monad has been utilized in building
secure web applications [38] and microkernels [39], and
thus is a promising defense for the security of AI agents.
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TABLE I: Unconstrained AI agents will execute dangerous
actions generated by the LLM. #Task is the number of
tasks we gathered in this category. #Gen is the number of
tasks accepted by the LLM and generates attacking actions.
#Exec is the number of LLM-generated commends that are
executed successfully and compromise the vulnerabilities.

#Task #Gen #Exec Attacked

Confidentiality 25 25 24 96.0%
Integrity 35 35 30 85.7%
Availability 35 30 22 62.9%

Total 95 90 76 80.0%

B. Sandbox

A sandbox restricts the capabilities of the agent program.
It enforces the limitation on the program’s access to both
local and remote resources. This section describes the
application of classic access control provided by sandboxes
on agent programs.

1) Access to local resources: The sandbox restricts
the agent’s consumption of local resources such as CPU,
memory, and storage. It also limits the agent’s access to
a sub-file system. Together with session management, it
further isolates the sub-file systems between sessions. To
demonstrate the necessity of this approach, we designed
BashAgent to interact with the operating system with
bash as its tool, which uses gpt-3.5-turbo to understand
user instructions and generate actions. BashAgent has two
variants BashAgent𝑓 granted with full accessibility and
BashAgent𝑐 constrained in a docker container. Based on
AgentBench [4], we collect and design 95 tasks related to
system security to check the harmfulness of unconstrained
AI agents. We categorize the tasks into confidentiality,
integrity, and availability, and check if the LLM would
accept the prompts with malicious intent and generate
the attacking actions. We show the results of running
BashAgent𝑓 in Table I. We found that BashAgent𝑓 accepts
the majority 90/95 of malicious intents and generates
the attacking instructions, and 76/90 generated attacking
commands could be executed successfully in an unprotected
environment, making the host system extremely vulnerable
in all three security aspects. However, once we apply ap-
propriate sandbox configurations, BashAgent𝑐 successfully
defended against all the LLM-generated attacks. The LLM
gpt-3.5-turbo was aligned with human values [40] but
still struggles to reject malicious intent in the AI agent use
case. Therefore, alignment training will not be enough to
secure AI agents, and adding limitations on access to local
resources is necessary for complete security.

2) Access to remote resources: Sandbox environment
implements controlled access through mechanisms like
whitelists, blacklists, and rate limiting in addition to
fundamental interaction isolation. This framework allows
resource providers to control the extent of access granted
to agent programs selectively, ranging from full permission

to complete prohibition or limitations to specific subsets of
resources. Consequently, our method enhances security by
effectively mitigating unwanted access from AI agents and
potential threats posed by adversarial inputs to the agent.

C. Protecting Models for AI Agents
AI agents must prevent the flow of private or malicious

information between users. Leaked private information
compromises the user’s privacy, while malicious information
causes the model to output wrong, objectional, or otherwise
malicious responses.

1) Sessionless models for AI agents: If the AI agent has
no notion of sessions, then the agent must not fine-tune
its LLM on private data or it must filter out private or
malicious data from the query to the model.
The first step is to identify this data. By employing

meticulous prompt engineering, developers can enable the
AI agent to interactively request sensitive data in a step-
by-step manner, leaving markers on the data for further
processing. The next step is to whitewash them into non-
sensitive data. For example, by replacing US social security
numbers (SSN) with nine random digits. This leaks no
information about the specific SSN but still allows the
model to learn from the context around the SSN. AI agent
applications require this harmless version of data to be
manipulable. For example, processing the last four digits
of the credit card number as in web shopping [3]. In this
case, the encryption transformation needs to be structure-
preserving and information-preserving to text slicing. One
solution for this is format-preserving encryption [41].

Definition IV.1 (FPETS). A Format-Preserving Encryp-
tion for Text Slicing is an encryption scheme 𝐸 such that
for all possible private messages 𝑚 and its indices 𝑖, 𝑗,
𝐸(𝑚[𝑖 … 𝑗]) = 𝐸(𝑚)[𝑖 … 𝑗], 𝑖 ≤ 𝑗.

FPETS allows language models to read and manipulate
private data as ciphertext instead of plaintext, therefore
preventing privacy leaks. However, whether encrypting
data in the input prompt harms the usability of the AI
agent or not is unknown. To verify this defense method,
we design an evaluation framework that prompts the LLM
to operate on encrypted data. Each task in our evaluation
framework is a roundtrip, where each AI agent is given a
pair of encryption and decryption functions. When given a
natural language prompt, the AI agents will first encrypt
the data, and then pass the ciphertext to their LLM for
manipulations such as text slicing. We then ask the agent to
return the slice of information we want. The agent responds
with the decrypted output for us to validate against the
original slice of plaintext. We measure the success rate
of this evaluation by 𝑆𝑢𝑐𝑐 = 𝑁′/𝑁 where 𝑁 is the total
number of tasks and 𝑁 ′ is the number of tasks where the
agent completed a round trip with no error.
As a proof of concept, we first tested encoded strings

before encrypted strings. We generate random strings
that include digits and both upper case and lower case
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TABLE II: Results for AI agent with encrypted data.
Each agent is evaluated on 100 randomly-generated tasks.
“SuccCiph” is the success rate of agent completing the tasks
with encrypted data. “SuccPlain” is the success rate of the
agent completing the same tasks without encryption.

Agent Model SuccCiph SuccPlain

FPETS gpt-3.5-turbo 49.0% 47.0%
FPETS gpt-4-turbo 55.0% 57.0%

FHE gpt-3.5-turbo 85.0% 99.0%
FHE gpt-4-turbo 89.0% 94.0%

letters, and encode them with a simple substitution cipher
denoted by 𝐸1, which extends the “rotate-by-13” cipher to
operate on the character set mentioned above. Since 𝐸1’s
substitution on the characters is one-to-one, 𝐸1 is FPETS.
Let 𝐷1 denote the decryption scheme corresponding to
𝐸1. For confidential data 𝑥, this evaluation process can be
formulated as 𝑥 = 𝐷1(𝑎𝑔𝑒𝑛𝑡(𝐸1(𝑥))).
For comparison, we also report the success rate of the

agent performing the same tasks with the plaintext in
Table II. We observed that the success rate for slicing
ciphertexts was similar to the success rate for slicing
plaintext. Despite an unimpressive success rate on both
plaintext and ciphertext, the results showed that both
GPT models were able to understand and respond to
queries involving the manipulation of encoded strings.
Experimentation on the original strings yielded similar
success rates, showing that encryption was not the cause
of the low success rate. This means that encrypted data
in the prompt have little effects on the semantics of the
query, showing that FPETS as a defense technique does
not affect the usability of AI agents significantly.

Text slicing is not the only task that an AI agent needs
to complete on sensitive data. Another frequent use-case
of AI agents is to perform calculations on sensitive data,
which is common in financial and medical domains [42].
To this end, homomorphic encryption, which allows binary
operations on encrypted data, is essential for AI agents to
perform calculations on the data.

Definition IV.2 (FHE). Let ⋆ be a binary operator. A
homomorphic encryption scheme 𝜑 ∶ 𝐴 → 𝐵 is a map
from set of messages 𝐴 to 𝐵 such that for all 𝑎, 𝑏 ∈ 𝐴,
𝜑(𝑎 ⋆ 𝑏) = 𝜑(𝑎) ⋆ 𝜑(𝑏). 𝜑 is considered a fully homomorphic
encryption scheme if it allows arbitrary function ⋆ to be
applied to the data an unlimited number of times [43].

We introduce the application of FHE to the AI agent
workflow. FHE serves as a defense for user data confi-
dentiality when the agent is required to perform math-
ematical operations on sensitive data. We expand our
evaluation to incorporate FHE and its intrinsic property
of allowing operations to be performed on ciphertext(s)
without decryption. Following a similar design for FPETS
evaluation, we provided the agent with an array of the

ciphertexts of numbers encrypted by a FHE scheme 𝐸2
and tools to perform addition and multiplication on the
ciphertexts. The decryption of the calculation result was
again done by the agent outside of the LLM. We prompt
the agent with queries asking for the sum or product
of numbers at specified indices of the ciphertext array
and use the same success rate metric for this evaluation.
Results in this case were verified by checking the agent’s
response against the original numbers’ binary operation
result (sum or product). Let 𝐷2 denote the decryption
scheme corresponding to 𝐸2. For confidential data 𝑥, 𝑦 ∈ ℝ
and binary operator ⋆ ∈ {+, ×}, a task can be formulated
as 𝑥 ⋆ 𝑦 = 𝐷2(𝐿𝐿𝑀(𝐸2(𝑥), 𝐸2(𝑦), ⋆)).
We report the evaluation results for FHE agents in

Table II. Our evaluation results on addition and multi-
plication suggest that this defense is effective for AI agents
requiring calculations on sensitive data supported by these
operations. Thus, FHE is a solution for maintaining privacy
during operations on sensitive data. Overall, our encryption
defense does not substantially compromise the usability of
AI agents and highlights a potential direction for future
research on privacy-preserving AI agents.

2) Session-aware models for AI agents: An alternative
to sessionless defenses is to make session-aware AI models.
Towards this direction, OpenAI recently introduced Tem-
porary Chat 2, where they promised not to use the chat
history to improve their models. However, not improving
the model on agent tasks would limit agent intelligence
and user experience. To build powerful agent programs to
handle diverse tasks, learning actions are essential.
One approach to privacy-preserving AI agents with

personalization is fine-tuning each user’s LLM on their own
chat history, isolating model updates per user. However,
this is costly and limited by available data. Alternatives like
in-context learning [44] and retrieval-augmented genera-
tion [45] enhance responses by embedding past contexts in
prompts, but are constrained by the length of model’s
context window. A more promising method is prompt
tuning [46], which freezes the foundational model and
adds a few user-specific learnable parameters 𝜃𝑃 only to
remember chat history. This technique avoids sharing data
with the foundation model provider, directly addressing
privacy concerns.

V. Related work
Recent advancements in LLMs have had a significant

impact in the development of AI agent, particularly in their
ability to reason based on natural language prompts to ob-
serve and interact with their environments dynamically [20,
25]. This shift from reinforcement learning to LLM agents
has ushered in a new wave of AI agent development, where
the emphasis is on enabling agents to perform actions based
on natural language commands. ReAct [23] introduced
chain-of-thought prompting [20] to guide pre-trained LLMs

2https://help.openai.com/en/articles/8914046-temporary-chat-faq

50

https://help.openai.com/en/articles/8914046-temporary-chat-faq


to follow instructions in the agent setting. This approach
has since been applied to computer tasks [22] and other
real-world tasks [3, 6, 47, 48]. To evaluate the performance
of the agents, several benchmarks [4, 5] have been proposed.
These benchmarks measure the correctness of an agent’s
actions without considering the potential vulnerabilities
that agent actions can cause to the environment.
The threats to LLMs and AI agents are different [49].

For LLMs, the concerns primarily address model alignment
with human values, including ethics, offensive language,
and politics [29]. Conversely, AI agents, which use LLMs to
generate actions and access tools, pose threats to real com-
puting systems, applications, and resources, compromising
their confidentiality, integrity, and availability.

VI. Conclusion
With the aid of tool-augmented LLMs, AI agents are

being recognized as a promising direction toward artificial
assistants. Considerable research has focused on enhanc-
ing the accuracy of AI agent actions through advanced
reasoning, planning, and learning. However, despite high
performance in controlled evaluation settings, the potential
side effects and dangers posed by these methods have not
been thoroughly examined. In this paper, we present a
systematic analysis of the security issues in current AI agent
development and propose practical and feasible defense
strategies. We discuss the potential vulnerabilities of AI
agents both theoretically and in realistic scenarios with
security-centric examples, and propose multiple defense
techniques for each identified vulnerability. We highlight
the future research directions and best practices for devel-
oping secure agent programs, and believe our work could
boost the advancement of secure and trustworthy AI agents.
Our code and data are publicly available 3.
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