
Security of AI Agents

Yifeng He, Ethan Wang, Yuyang Rong, Zifei Cheng,
Hao Chen
University of California, Davis

April 29th, 2025



Introduction

Vulnerabilities

Defenses

References



On the Emergence of LLM-based AI Agents I
LLM-based AI agents are robots in cyberspace, taking user instructions in
natural language (NL), and executing tasks on behalf of their users. The
LLM, as the brain of the agent, can
• understand and reason about the user’s query (Q),
• perceive the environment and available tools by NL descriptions,
• generate tool-use actions (A) to be executed by the agent.



On the Emergence of LLM-based AI Agents II

Figure 1: Overview of LLM-based AI agent. AI agents may interact with the
environment by API calls to tools, or use device control to mimic human users.



Common Design Pattern of AI Agents
The agent often takes multiple steps to complete a task, which can be
abstracted as a production sequence [1]:

Agent : Q LLM
−−→ Q A (1)

Figure 2: Common state-ful design patterns of AI agents.



Introduction

Vulnerabilities

Defenses

References



Vulnerabilities of AI Agent Designs
Sessions. Recall Equation 1, the state of the LLM-based agent is encoded
in the context query Q, explicitly in natural language.
Insufficient Access Control.
• There lacks a proper access control mechanism in the agent.
• GUI agents control the computer using human-like actions.
• API agents send the same requests as regular software.
• Model Context Protocol 1 enables integration between agents and data

sources and tools but not an access control mechanism that differentiates
agents from human users.

The Vulnerability Inherited from the LLM. Fine-tuning with usage data
to improve agent workflow × adversarial users =⇒ model pollution and
privacy leak.

1https://github.com/modelcontextprotocol

https://github.com/modelcontextprotocol


Vulnerabilities of Running Agent Programs I

Figure 3: An illustration of vulnerabilities of zero-shot action agents.
“World”: the host OS of the agent and external API resources.
Malicious actions can be generated from adversarial prompts, model pollution, or
model hallucination without malicious party.



Vulnerabilities of Running Agent Programs II

Figure 4: Each step of the agent’s planning process is a potential attack vector. Even
if the users are interacting with the agent program in a non-harmful way, they
might still cause security issues unintentionally.



Vulnerabilities of Running Agent Programs III
When agents are deployed on machines (PC, mobile, etc.), with access to
local files and applications, and tools to call applications and external APIs,
• Confidentiality: agents gain read access to files and data on the local

machine, some may contain adversarial prompts, while others may be
sensitive.

• Integrity: agents gain write access to files and applications, allowing
attack vectors for tool misuse and data corruption.

• Availability: specially designed prompts may cause the agent to hang in
the reasoning/planning process, or even consume all resources on the
local machine with generated actions.



Introduction

Vulnerabilities

Defenses

References



System Security for Safe Agent Design: Sessions

Figure 5: Session management for stateful LLM-based AI agent.
We use numbers with gray boxes to denote the session ID.

• For one-agent-multiple-users design, we can use a key-value database
(KVDB) to manage sessions for different users.

• However, recall equation 1, the state of the agent for each user is still
encoded in the context query Q.



System Security for Safe Agent Design: Sandbox
Table 1: Unconstrained agents will execute dangerous actions.

#Task #Gen #Exec Attacked

Confidentiality 25 25 24 96.0%
Integrity 35 35 30 85.7%
Availability 35 30 22 62.9%

Total 95 90 76 80.0%

Figure 6: AI agent design with sandbox for actions isolation.



Encryption for Agent Data Access

Figure 7: AI agents with encryption.
Encryption Model SuccCiph SuccPlain

FPETS gpt-3.5-t 49.0% 47.0%
FPETS gpt-4-t 55.0% 57.0%

FHE gpt-3.5-t 85.0% 99.0%
FHE gpt-4-t 89.0% 94.0%

Table 2: Tool-use performance of AI agents.

FPETS: Format-Preserving
Encryption for Text Slicing.

FHE: Fully Homomorphic
Encryption.

Encryption defense does not
substantially compromise the
usability of AI agents’ tool-use.



User-Spefic Agent Fine-tuneing

Figure 8: Session-aware AI agents with
prompt tuning.

θPi denotes the added
trainable parameters only for
the user’s chat history.

AI agents can be improved by
updating only θP , without
compromising the
foundational LLM or leaking
private information.



Thanks For Your Attention!
Any questions?



Introduction

Vulnerabilities

Defenses

References



T. Sumers, S. Yao, K. Narasimhan, and T. Griffiths, “Cognitive
architectures for language agents,” Transactions on Machine Learning
Research, 2024.


	Introduction
	Vulnerabilities
	Defenses
	References

