FuzzAug: Data Augmentation by Coverage-guided Fuzzing
for Neural Test Generation

Yifeng He, Jicheng Wang, Yuyang Rong, Hao Chen
University of California, Davis
{yfhe, jicwang, chen}@ucdavis.edu, PeterRong96@gmail.com

Abstract

Testing is essential to modern software engi-
neering for building reliable software. Given
the high costs of manually creating test cases,
automated test case generation, particularly
methods utilizing large language models, has
become increasingly popular. These neural
approaches generate semantically meaningful
tests that are more maintainable compared with
traditional automated testing methods such as
fuzzing. However, the diversity and volume of
unit tests in current datasets are limited, espe-
cially for newer but important languages. In
this paper, we present a novel data augmenta-
tion technique, FuzzAug, that brings the ben-
efits of fuzzing to large language models by
incorporating valid testing semantics and pro-
viding diverse coverage-guided inputs. Dou-
bling the size of training datasets, FuzzAug im-
proves performance over the baselines signif-
icantly. This technique demonstrates the po-
tential of introducing prior knowledge from dy-
namic software analysis to improve neural test
generation, offering significant enhancements
in this task. Our code is open-sourced at https:
//github.com/SecurityLab-UCD/FuzzAug.

1 Introduction

Testing is one of the most important processes in
software engineering, ensuring the quality and reli-
ability of large software applications. Unit tests
are example-based self-assessment tests written
and executed by the developer to demonstrate that
the software works correctly as described in the
design specification (Runeson, 2006). However,
despite its importance, developers do not always
contribute new tests due to the difficulty of iden-
tifying which code to test, isolating them as fine-
grained units, and finding relevant inputs (Daka
and Fraser, 2014). Heuristic-based automatic unit
test generation (Pacheco and Ernst, 2007; Fraser
and Arcuri, 2011) is one solution to these issues,
but the resulting tests are unsatisfactory in read-

ability, correctness, and diversity of relevant input-
output pairs (Panichella et al., 2020). Other pop-
ular automatic randomized testing methods, e.g.
fuzzing (Serebryany, 2016), often ignores readabil-
ity and focuses only on generating inputs to find new
program behaviors, i.e. new coverage or crashes.
However, these randomized testing methods only
provide the input that triggers the bug with no valid
semantics. These reported input seeds are usually
not as informative as unit test functions in prac-
tice (Goldstein et al., 2024). Therefore, finding
semantically meaningful test cases correctly and
effectively remains an unsolved problem.

More recently, people have attempted to over-
come these issues by leveraging the power of gener-
ative language models (Nie et al., 2023; Rao et al.,
2024; He et al., 2024). Large language models
(LLMs) trained on large code corpora can write
meaningful programs given text descriptions (Bai
et al., 2023; Roziere et al., 2023; Lozhkov et al.,
2024). Therefore, with sufficiently large code and
test datasets, we expect that LLMs could generate
high-quality unit tests to assist human software en-
gineers.

However, testing functions typically occupy a
minor fraction of a software repository, compared
with regular functions for software features. Rao
et al. (2024) found that in popular Python and Java
repositories, test files comprise fewer than 20% of
all code files. This deficiency in training data ham-
pers the ability of LLMs to generate practical tests
for production environments for two reasons: 1. the
imbalance in training data causes the model to miss
critical details in the units under test. 2. the in-
sufficient amount of testing code presents a sig-
nificant challenge in learning the representations
of unit tests adequately. Previous work addressed
the imbalance issue by aligning code and tests into
pairs (Rao et al., 2024; He et al., 2024). However,
the second issue remains unsolved, and is further
amplified by the trend of switching to newer pro-

15642

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 15642—-15655
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/SecurityLab-UCD/FuzzAug
https://github.com/SecurityLab-UCD/FuzzAug

gramming languages for better maintainability and
reliability, e.g. redesigning software in Rust.

A promising strategy to further enhance the ex-
isting state-of-the-art unit test datasets is designing
a new specialized data augmentation (DA) method
for LLM-based test generation. In computer vi-
sion, data augmentation typically involves applying
randomized geometric or color fransformations or
injecting random noise to images in the training set.
However, these methods are unsuitable for program-
ming languages (PLs) due to their formal grammar
and strict semantics. Limited research (Yu et al.,
2022) on DA for PL is not suitable for test gener-
ation, as they do not introduce new test cases that
explore the behavior of the program. Unit test func-
tions provide correct setups to invoke the functions
under test (focal functions), and test inputs are fed to
the focal functions to explore their functionality at
run-time. Consequently, a valid data augmentation
method for test generation must incorporate seman-
tically meaningful unit test functions, coupled with
randomized yet valid testing inputs tailored to the
specific functions under test.

To address these challenges, we propose Fuz-
zAug. FuzzAug, as depicted in Figure 1, is a direct
and effective data augmentation technique utilizing
fuzzing data to enhance test generation with LLMs.
Fuzzing identifies vulnerabilities in software by ran-
domly generating inputs to trigger new execution
paths in software. These inputs capture the pro-
gram’s runtime behavior and thus can enhance the
code understanding capabilities of LLMs (Zhao
et al., 2023; Huang et al., 2024). For implement-
ing fuzzing data as a form of data augmentation,
we perform code transformations on fuzz targets
in libFuzzer (Serebryany, 2016) to create new unit
test functions. FuzzAug nearly doubles the lim-
ited amount of testing code in training datasets
and provides a richer diversity of accurate and ex-
ecutable inputs for the focal functions. Training
LLM-based test generation models with FuzzAug
addresses the aforementioned issues by automati-
cally providing unit test functions with high-quality
test inputs. Thus, FuzzAug is a novel approach in
training practical LLM-based unit test assistance,
enhancing software robustness and maintaining test
readability.

To assess the effectiveness of FuzzAug, we con-
ducted experiments with three different state-of-
the-art 7B open-source code generation models.
Each model was trained on two datasets: on the
original UniTSyn (He et al., 2024) dataset and its

FuzzAug-augmented counterpart. All three mod-
els trained with FuzzAug consistently outperformed
their counterparts trained on only UniTSyn, and out-
performed the pre-trained/instruction-tuned base-
line significantly. They demonstrated significant
improvements in generating accurate test cases (as-
sertions) and useful test functions that achieved
higher code coverage.

Our contributions. 1. We introduce FuzzAug,
a novel data augmentation method specifically de-
signed for neural test generation LLMs to address
the limitations of existing training datasets. 2. We
build and release the Rust version of UniTSyn, aim-
ing at training test generation models for Rust pro-
grams. Furthermore, we apply FuzzAug to this
dataset and release the resulting augmented dataset,
enhancing its utility for advanced model training.
3. We validate the efficacy of FuzzAug by train-
ing generative LLMs on the UniTSyn dataset aug-
mented by it. The notable improvement under-
scores the necessity and advantages of incorporat-
ing fuzzing-augmented testing functions into the
training corpus, demonstrating the practical bene-
fits of our approach.

2 Design of FuzzAug

2.1 Challenges

Generating meaningful test functions as training
data for neural test generation models is a complex
and critical challenge. To introduce high-quality
random data for training test generation models, a
data augmentation method should satisfy the fol-
lowing requirements: 1. The randomly generated
data must be meaningful and valid to the software
testing context, i.e., the random data should be able
to explore the program’s behavior space. 2. The
augmentation modification must provide valid test-
ing semantics in the unit test functions. As stated
by Pacheco and Ernst (2007), unit test functions
must correctly parse the random input, set up the
state by invoking the focal function, and assert the
result of the final call is desired when possible.
Therefore, designing data augmentation to train
test generation models involves creating a sophisti-
cated balance. On the one hand, introducing suffi-
cient variability to train the models under diverse
conditions is essential to generate high-quantity test
cases. On the other hand, maintaining the semantic
integrity of augmented test functions is crucial to
ensure the validity of training data. This makes the

15643

Unit test

functions

Extract Fuzz targets with

ﬁ

Fuzz targets

Code Extract|

repsitories

Instrumentation Fuzz
e
reporter e

Syntax
transformation B Instantiate
I Unit test
template: TO

Seeds generated by fuzzing

-

Continue
pre-training/
fine-tuning Code
— > generation
models

v v v
T n N

Unit tests with diverse seeds

Figure 1: Data Augmentation by fuzzing for neural test generation. To construct the augmented dataset, we first
extract unit test functions (Listing 1) and fuzzing targets (Listing 2). We instrument each fuzz target with a reporter
(Listing 3) to collect fuzzing seeds. We transform each fuzz target into a unit test template (Listing 4). Finally, we
instantiate the templates with valid test inputs to create the augmented training dataset (Listing 5). Please refer to

Figure 2 for examples of each step.

development of FuzzAug not only challenging but
also vital for advancing the capabilities of neural
test generation with language models.

2.2 Fuzzing for Random Input

The first requirement ensures that the randomly gen-
erated data is beneficial to model training. High-
quality test cases are expected to reflect the behavior
of the programs, which is hard to achieve by data
augmentation for natural language data. To improve
the model’s ability to generate useful test cases, the
data augmentation method needs to be aware of the
program’s structure and behavior.

Fuzzing. Fuzzing is a widely used software test-
ing method that generates inputs randomly to ex-
plore unseen program behaviors (Zeller et al., 2019).
Coverage-guided fuzzing can be summarized as a
four-stage loop consisting of input generation, pro-
gram execution, behavior monitoring, and input
ranking, as shown in Figure 4. First, the program is
executed with a given input. During execution, the
program’s dynamic behavior, particularly branch
coverage, is monitored to collect coverage informa-
tion. If a new behavior is observed, the triggering
input is saved in a seed queue and prioritized for the
next round of mutation; otherwise, it is discarded.
Finally, the mutator modifies the input for the next
cycle to explore new behaviors. Various mutation,
behavior monitoring, and seed scheduling strategies
have been studied to enhance the quality of input
seeds during fuzzing (Bohme et al., 2016, 2017;
Chen and Chen, 2018; She et al., 2019), and are
integrated into modern fuzzers like LibFuzzer (Sere-
bryany, 2016).

Fuzzers select input seeds by executing the pro-

grams. These inputs embed the program’s dynamic
behavior and are thus able to discover bugs and vul-
nerabilities in the program. Previous studies (Zhao
et al., 2023; Huang et al., 2024) show that fuzzing
input-output pairs are helpful for language mod-
els to understand programs. Therefore, we argue
that random inputs generated by fuzzers are also
suitable to contribute to randomized mutation for
testing function data augmentation. Thus, this first
requirement is satisfied by engaging fuzzing in the
data augmentation process.

LibFuzzer (Serebryany, 2016) allows users to
define custom fuzz targets to specify the most im-
portant functions as entry points for testing. We
select libFuzzer for its function-level fuzzing fea-
ture to ensure syntax correctness when invoking
the corresponding focal function. If we can com-
pile and run the fuzz target successfully, we are
confident that the testing code is valid training data
for the language model. Therefore, the validity of
FuzzAug is guaranteed. To collect inputs with the
program’s dynamic behavior from the fuzzing loop,
we instrument each fuzz target with a reporter, as
shown in Figure 1. After all the fuzz targets in the
project are instrumented, we start the fuzzing loop
for each target and save the reported inputs as a ran-
domly generated portion of our data augmentation
process.

2.3 Unifying Code Representation

For code generation with causal language modeling,
valid and complete training data with appropriate
semantics within the tokens is beneficial. There-
fore, to avoid any distribution shift between unit
test functions and data augmentation, we cannot

15644

1 | #[test] 1 |#! [no_main]
2 | fn encode_all bytes_url() { 2 | #[macro_use] extern crate libfuzzer_ sys;
3 let bytes: Vec<u8> = (0..=255).collect (); 3 | extern crate base64;
4 assert__eq!(4 | use base64::*;
5 ?...”, /] expected result 5 |mod utils;
6 &engine : : GeneralPurpose : : new(&URL_SAFE, 6 | fuzz_target!(|data: &[u8]| {
PAD) . encode (bytes) 7 let engine = utils::random_engine(data);

7) 8 let _ = engine.decode(data);
8 1} 9 11

Listing (1) Unit test function extracted from repository Listing (2) Fuzz target extracted from repository
1 | fuzz_target!(|data: &[u8]| { 1 | #[test]
2 report(data); // example reporter 2 | fn test_template() {
3 let engine = utils::random_engine(data); 3 let data = []; // example template
4 let _ = engine.decode(data); 4 let engine = utils::random_engine(data);
501 5 let _ = engine.decode(data); }

Listing (3) Fuzz target instrumented with reporter Listing (4) Test template transformed from fuzz target

1 | #[test]
2 | fn test_1() {
3 let data = [3,44,12,3,21,2,255,12,4,34,12,4,12,3]; // example recorded test input
4 let engine = utils::random_engine(data);
5 let _ = engine.decode(data); }

Listing (5) Unit test function instantiated from test template with a seed generated by fuzzing

Figure 2: Simplified examples from base64 (Pierce, 2024) in our collected Rust dataset. Each example listing
corresponds to one step in Figure 1. Please refer to Section A.2 for details of unit testing in Rust.

append inputs generated by fuzzing to training data
directly due to the distinct representations between
raw fuzzing inputs and meaningful unit test func-
tions. Fuzzers treat all inputs as bytes and apply
byte-level random mutations, for example, bit-flip.
Previous work on using fuzzing data for code under-
standing tasks decodes the raw inputs into strings
and appends the inputs to the program (Zhao et al.,
2023) or uses different language modeling loss func-
tions for two kinds of data (Huang et al., 2024).
However, these approaches do not apply to gen-
erative models, so we need to design a different
representation for fuzzing data.

We implement a syntax transformation in the
compiler frontend to obtain valid new test functions
to keep testing semantics. We compiled these candi-
dates (Listing 2) into Abstract Syntax Trees (ASTs)
and extracted the function bodies from each AST
using proc_macro (David Tolnay and Alex Crich-
ton, 2024) and syn (David Tolnay, 2024). Then we
rewrite the macro for fuzz targets into valid function
definitions with the #[test] attribute on top to help
test discovery (Listing 4). We call the result of syn-
tax transformation test tremplate. We demonstrate
a fuzz target and its transformed test template in
Figure 1. These test templates are stored for actual
data augmentation at a later stage.

Algorithm 1 Fuzzing as Data Augmentation

function FuzzAuc(repo, N, L, timeout)
> repo = repository to apply FuzzAug
> N = number of training examples to generate
> L = maximum input length for collection
> timeout = maximum allowed fuzzing time
datasetag + []
for all t € GETFUZZTARGET(repo) do
t' < REPORTERINSTRUMENTATION(t)

1:
2
3
4.
5:
6
7
8:
9: inputs < Fuzz(t', timeout)

10: inputs’ < FILTER(\z : LEN(z) < L, inputs)

11: selected < SAMPLE(N, inputs’)

12: templates < SYNTAXTRANSFORMATION (%)

13: aug + INSTANTIATE(templates|: N],
selected)

14: datasetag < datasetag + aug

15: return datasetag

2.4 Fuzz Augmentation

To ensure the quality of the augmented data, we
employed an input selection algorithm as shown in
Algorithm 1. Raw inputs collected from fuzzing
have two drawbacks. First, there will be repeated or
overlapping inputs collected from fuzzing. Fuzzing
applies mutation on inputs that explore new paths
in the program. Therefore, consecutive inputs differ
only in small parts, which should be avoided.
Second, since the input data are generated ran-
domly by libFuzzer (Serebryany, 2016), the token
length for those inputs can be excessively long. This
behavior happens especially commonly when the
input type is a vector or long number (i64, f64, etc)

15645

Dataset #Repo #Focal # Pairs # Tokens
Unit tests 249 14633 7881 2.5M
Fuzz 179 14790 6811 2.2M
All 249 29423 14692 4.7TM

Table 1: Dataset statistics. Unit tests: the base dataset
we collected from code repositories using UniTSyn (He
etal., 2024). Fuzz: the dataset we transformed from fuzz
targets using Algorithm 1, where N = 40. Augmented
dataset: the combination of unit tests and fuzz.

since the length of the vectors or numbers is not a
problem for fuzzing. However, for generative mod-
els, the acceptable token length is much smaller, so
such long inputs will harm the performance of the
model. To overcome the aforementioned issues, we
designed our selection algorithm to first shuffle the
inputs and then sample the desired inputs within a
given length. Our algorithm samples N fuzzing in-
puts that satisfy the requirements to instantiate the
test templates for unique data augmentation (List-
ing 5).

3 Experimental Setup
3.1 Data Collection

We chose the Rust language to conduct this research
for three reasons. First, Rust projects are highly
structured with src/, tests/, and fuzz/ directories on
the top level. With the cargo package manager, we
can build and run the project without solving de-
pendency issues. Second, the Rust compiler has
built-in support for unit testing and fuzzing, so col-
lecting unit tests and fuzzing data is straightforward.
Third, Rust’s syntax for libFuzzer passes a closure
to a predefined macro, so we can apply syntax trans-
formation described in Section 2.3 to the fuzz tar-
gets. Rust is one of the most popular languages for
security-critical software, and yet is new compared
to older languages like C/C++, further highlighting
the necessity for effective data augmentation. We
follow UniTSyn (He et al., 2024) to collect the train-
ing data from open-source repositories on GitHub.

Unit test collection. Different from previous
work training on file-level code-test pairs (Rao et al.,
2024), we follow previous work (Nie et al., 2023; He
et al., 2024) to collect our training data as function-
level code-test pairs since it suits our data augmen-
tation method. We implement the Rust hook for
the UniTSyn (He et al., 2024) based on the #[test]
attribute on top of the Rust unit test functions. To

Base Model

Method StarCoder2 CodeQwenl.5 Codellama
UniTSyn UnitCoder UnitQwen UnitLlama
FuzzAug FuzzCoder FuzzQwen FuzzLlama

Table 2: Our model selection for evaluation.
Base Model: names of the baseline models used for
applying the fine-tuning methods.

find the call to the focal function, since assertions in
Rust are macros instead of keywords or functions as
in UniTSyn, we extend the framework to handle this
macro-specific case. From the downloaded reposi-
tories, we found 14 633 calls to the focal functions
in the unit tests, and collected 7881 focal-test pairs
as training data.

Augmented test collection. We chose LLVM lib-
Fuzzer (Serebryany, 2016) to utilize the pre-defined
fuzz targets in the code repositories. For Rust, lib-
Fuzzer is supported as cargo-fuzz. We instrumented
each fuzz target in the repository to report the input
fuzzing data. We transform the body of the fuzz
target macro to an equivalent unit test template, as
described in Figure 1. We fuzzed all targets for
one minute following previous work (Zhao et al.,
2023; Huang et al., 2024) on fuzzing for code un-
derstanding. All fuzzing processes are performed
on a server with dual 20-core, 40-thread x86_64
CPUs and 692 GB of RAM. Of the 249 reposito-
ries we downloaded, 179 compiled successfully for
fuzzing. For the main experiments, we set N = 40
so that the augmented data is at the same scale as
the original unit test dataset, and explore the effects
of scaling IV later in Section 4.4. We collected in
total of 6811 additional code-test pairs generated
by FuzzAug. The statistics of the collected unit test
dataset and data augmentation are summarized in
Table 1.

3.2 Baseline Models

We select three baselines to evaluate FuzzAug. Star-
Coder2 (Lozhkov et al., 2024) is the successor of
UniTSyn’s base model SantaCoder (Allal et al.,
2023). We follow EvalPlus (Liu et al., 2023) to se-
lect the best-performing 7B code generation model
CodeQwenl.5 (Bai et al., 2023). Finally, we ex-
periment on Codel.lama (Roziere et al., 2023) to
compare against its instruction-tuned baseline. The
complete model selection and naming are in Table 2.
Our training details are in Section A.1.

15646

3.3 Research Questions

To evaluate FuzzAug, we structure our experiments
around the following research questions on the qual-
ity of generated unit tests:

RQ.1. Can FuzzAug improve the accuracy of
generated test cases? Software testing aims to
discover hidden bugs in the code. The prerequisite
of this aim is to have accurate test cases, where
the generated input and output to the focal function
match with the ground truth. Therefore, accuracy
of generated test cases is an essential metric for
software testing. Generating accurate test cases
requires the model to learn both the semantics and
runtime behavior of the focal function, which is
challenging for language models (Gu et al., 2024).
We follow previous work (Chen et al., 2023a; He
et al., 2024) to extract the first 10 generated test
cases to examine their standalone correctness. We
compile and execute these test cases against the
ground truth focal function independently.

RQ.2. Can FuzzAug improve the validity and
completeness of generated unit tests? Accurate
assertions are essential for unit testing, while com-
pleteness and validity are necessary for generated
test functions to be practical. A generated test func-
tion is valid if it can be compiled and executed.
On the other hand, a test function is complete if it
can cover all of the branches of the focal function.
Therefore, we follow UniTSyn to use the compile
rate of the whole generated unit test functions and
branch coverage on the focal functions to check the
validity and completeness of the generated unit test
functions. We use grcov (Marco Castelluccio, 2024)
to measure the branch coverage.

RQ.3. Can FuzzAug generalize to other models?
Data augmentation is a training-time technique that
should improve the performance of all models in
the same task.

RQ.4. The effect of further scaling FuzzAug.
It is possible to further scale-up FuzzAug, so we
explore the effects of hyperparameter N.

3.4 Evaluation Setup

Benchmark dataset. We follow UniTSyn to eval-
uate the models on HumanEval-X (Zheng et al.,
2023), a hand-crafted benchmark for code genera-
tion tasks that contains Rust. HumanEval-X has 164
different problems, where each of them is composed
of description prompt in natural language, function

1 | fn has_close_elements(numbers: Vec<f32>,

threshold: f32) -> bool { ... }
2 | // Check the correctness of ¢
has_close_elements*®
#lefg (test)]

mod tests {
use super::*;
#[test]
fn test_has_close_elements() {
assert__eq! (has_ close__elements (

00NN AW

Listing 6: Example prompt used for test generation.
Import statements are removed for simplicity.

declaration (header), canonical solution (ground
truth implementation), and unit test function. We
follow UniTSyn to use the canonical solution as
the focal function, and let the model generate the
corresponding test function.

Prompts. We follow Chen et al. (2023a) to guide
the language models in generating assertions (List-
ing 6). We use natural language “Check the cor-
rectness of “function name™” in comments to in-
struct the model to complete the test function. We
guide the generation of assertions by providing the
language-specific assert keyword and the incom-
plete invocation of the focal function. We allow the
model to predict at most 1024 new tokens for the
synthesized assertions for all models. We set the
generation temperature to 1 for all the models to
encourage output diversity. We concatenate the im-
port statements, the focal function implementation,
the natural language instruction in the comment,
and the test header together as the import prompt
to the language model.

Post-processing. We avoid overly intricate pro-
cessing of the generated test functions to keep our
evaluation results faithful. We first count the num-
ber of the curly brackets. If the numbers do not
match, we check if the last generated line ended
with a semicolon to see if the last line is complete.
If not, we remove that line. Then we add the miss-
ing closing curly brackets to complete the generated
test.

4 Evaluation Results

We report our experimental results on the perfor-
mance of neural test generation in this section. We
categorize the models into three groups: pre-trained
(PT), instruction-tuned (IT), and fine-tuned (FT)
models. PT and IT models are the baselines, while
FT models are further trained with UniTSyn and
FuzzAug.

15647

Model Type Assert. CR Acc

StarCoder2 PT 64.09 31.83
UnitCoder FT 65.73 32.99
FuzzCoder FT 70.98 35.50
CodeLlama IT 64.57 32.13
UnitLlama FT 70.79 34.70
FuzzLlama FT 75.67 37.07
CodeQwenl.5 PT 66.52 41.71
UnitQwen FT 73.54 46.04
FuzzQwen FT 80.91 52.20

Table 3: Accuracy of tests generated by LLMs. The
best results are highlighted in bold. Assert. CR: the
compile rate of the individual assertions. Acc: accuracy
of individual assertions.

4.1 Test Case Correctness

We follow CodeT (Chen et al., 2023a) to guide
the language models in generating independent test
cases (assertions). Since the assertions are inde-
pendent, we can parse them and evaluate each one
of them individually. We present the evaluation
results in Table 3. Notably, CodeQwenl.5 is the
strongest model in this assertion compile rate eval-
uation, where we observe an increase of +74.38%
over the base CodeQwenl.5 model and +7.37%
over UnitQwen. For assertion accuracy, We observe
a +10.49% increase over the base CodeQwenl.5
model and a +6.16% increase over UnitQwen.

4.2 Test Validity and Completeness

To evaluate if FuzzAug can help the model generate
valid unit test functions, we evaluate the generated
unit test functions without extracting the individual
assertions. Results for this experiment are shown
in Table 4. For whole test function compile rate,
FuzzAug also shows stable improvements on all
models. On the strongest model, CodeQwen1.5, we
observe an increase of +4.88% over CodeQwen1.5
and +12.80% over UnitQwen.

FuzzAug also improves the average branch cover-
age consistently. For CodeQwenl.5, we observe
an increase of +3.73% over CodeQwenl.5 and
+3.87% over UnitQwen. Achieving high branch
coverage is a hard task for LLMs, as it requires
deep understanding and reasoning ability over the
function’s control flow. For reference, even with
known overfitting issues (Jain et al., 2024), GPT-
4 can only achieve an average branch coverage of
47.94%.

Model Type Func. CR Cov
StarCoder2 PT 45.73 9.88
UnitCoder FT 48.17 11.92
FuzzCoder FT 59.56 17.09
CodeLlama IT 54.88 15.75
UnitLlama FT 64.02 16.23
FuzzIlama FT 71.95 19.52
CodeQwenl.5 PT 68.29 20.90
UnitQwen FT 60.37 20.76
FuzzQwen FT 73.17 24.63

Table 4: Evaluations of usefulness of generated unit
tests. Func. CR: the compile rate of generated unit
test functions. Cov: the average branch coverage of
generated unit test functions on the focal functions.

4.3 Generalizability of FuzzAug

Useful data augmentation methods should work on
different models. We fine-tune three different mod-
els with FuzzAug and evaluate their performance,
where all models trained with FuzzAug show im-
provements over the baseline pre-trained models
and UniTSyn.

4.4 Scaling FuzzAug

We explore the effects of scaling FuzzAug to con-
struct larger training datasets. To assess the impact
of varying amounts of fuzzing inputs, we train mod-
els with N = 40, 60, 80, 100 fuzzing samples for
this experiment.

As shown in Appendix Figure 5, the impact of
scaling FuzzAug is not consistent across models.
In particular, for the stronger base model Code-
Qwenl.5, increasing N does not lead to significant
changes. Conversely, for weaker base models, scal-
ing N improves both assertion accuracy and com-
pile rate. When evaluating the test function com-
pile rate, both Fuzzl.lama and FuzzCoder exhibit a
positive correlation with increasing N. Addition-
ally, Fuzzllama’s accuracy improves with larger IV,
while other metrics show no clear trend.

The results suggest that dataset size alone is not
the primary factor influencing model performance.
Instead, the quality of data augmentation, driven by
the test semantics of the fuzz targets and coverage-
guided inputs, plays a more crucial role. Therefore,
we recommend selecting N at a scale comparable
to the original training dataset, which should be
enough.

15648

5 Related Work
5.1 Fuzzing

Fuzzing is a popular execution-based dynamic
testing technique with randomized inputs in var-
ious software domains (Rong et al., 2020, 2025).
Fuzzing aims to generate a set of inputs based on
the provided set of seeds to achieve high code cov-
erage. The fuzzer uses behavior monitoring to find
inputs with high branch coverage and favors those
inputs for future input generation (Chen and Chen,
2018; She et al., 2019; Rong et al., 2024; Zhang
et al., 2024). LibFuzzer (Serebryany, 2016) is part
of LLVM (Lattner and Adve, 2004), and can also be
used in other mainstream languages (Intelligence,
2024; Google).

Fuzzing for machine learning. Inputs generated
by coverage-guided fuzzing can benefit language
models in understanding programs, as they contain
information about the program’s dynamic behav-
ior (Zhao et al., 2023; Huang et al., 2024). Fuzzing
was also adopted as a data augmentation tool to im-
prove the robustness of neural networks (Gao et al.,
2020).

5.2 Test Generation via LLMs

Using large language models to generate test cases
is a new trend in automatic software testing. This
method is referred to as neural test generation. The
direct approach toward neural test generation is to
instruct pre-trained code generation LLMs (Roziere
et al., 2023; Lozhkov et al., 2024), or foundation
models (Achiam et al., 2023; Schifer et al., 2024;
Tang et al., 2024). The other approach is to train test-
specific models that are specialized in generating
test cases or test functions (Watson et al., 2020;
Tufano et al., 2021; Dinella et al., 2022; Alagarsamy
et al., 2023). The more recent work (Nie et al.,
2023; Rao et al., 2024; He et al., 2024) proposed to
train the test generation model on aligned data that
includes the correspondence between the unit test
and the function under test (focal).

6 Conclusion

We developed FuzzAug, a data augmentation
method for unit test function generation. Fuz-
zAug combines the advantages of coverage-guided
fuzzing and generative large language models to
generate tests that are not only semantically mean-
ingful but also strategically comprehensive. We
applied FuzzAug to fine-tune three state-of-the-art

7B open-source code generation models, demon-
strating the effectiveness of FuzzAug. We collected
our experimental dataset on Rust crates that have
pre-defined fuzzers as a Rust extension to UniTSyn.
Our method can be generalized to all languages
that OSS-Fuzz supports with slight modifications.
Our results show the effectiveness of employing
dynamic program analysis to generate high-quality
inputs to augment the code-test datasets in training
language models for unit test generation. We be-
lieve FuzzAug can spur the development of unit test
generation by large language models and contribute
to the field of Al for software testing.

Limitations and Future Work

In this section, we discuss the potential concerns
of our design and limitations, and propose future
work directions.

Applying to Different Languages

The syntax transformation from fuzz targets to unit
test templates differs for languages. However, the
general framework is language-agnostic. Further
work could extend UniTSyn (He et al., 2024) to
syntax transformation for multilingual support.
On a high level, fuzzing is language-agnostic.
We choose Rust to conduct our study in this pub-
lication to take advantage of its powerful build
tool cargo, which allows developers to define their
fuzz targets inside the repository. In principle,
our method can be generalized to all libFuzzer-
supported languages, and their corresponding fuzz
targets can be found in OSS-Fuzz (Serebryany,
2017). To use FuzzAug in other languages, one
could locate the fuzz targets in OSS-Fuzz. We pro-
vide FuzzAug for Python in our open-sourced repos-
itory. The current limitation of FuzzAug is that only
languages supported by OSS-Fuzz can be used.

Applying to Different Datasets

We followed previous work (Nie et al., 2023; He
et al., 2024) to construct our dataset on function-
level code-test pairs. File-level pairing approach
used in CAT-LM (Rao et al., 2024) offers addi-
tional benefits by providing more relevant context,
which is particularly useful in less modular, tightly
coupling, complex software systems. FuzzAug ap-
plies to both function-level and file-level data to
accommodate various types of datasets effectively.
LibFuzzer maintains separate fuzz targets in dif-
ferent files. After syntax transformation and fuzz

15649

data collection, FuzzAug can insert augmented unit
test functions into their original files and adopt
CAT-LM'’s pairing strategy, versatility enhancing
FuzzAug’s ability to augment and improve various
types of unit test datasets effectively. However, we
do require the software to compile and run.

To overcome issue of no fuzz target provided,
further research could combine FuzzAug with au-
tomatic fuzz target generation, including interpre-
tive (Chen et al., 2023b) and LLM-based (Lyu et al.,
2024) methods.

Evaluation on Real-World Projects

In our experiments, we follow UniTSyn to assess
the validity and completeness of generated unit test
functions using HumanEval-X (Zheng et al., 2023).
We did not use real-world Rust projects due to a
few challenges. First, as discussed in UniTSyn, it is
hard to eliminate data leakage when evaluating on
open-source projects. He et al. (2024) conducted a
detailed analysis of the data leakage issue, and con-
cluded that, under their dataset construction method,
there will be no data leakage on HumanEval-X dur-
ing training.

Second, we want to minimize the negative im-
pacts of incorrect project setup. Generating unit
tests in large open-source software (OSS) requires
special setups for each project. These setups for
defect testing are hard to construct and require hu-
man domain knowledge (Zhu and Rubio-Gonzdlez,
2023). Therefore, choosing to evaluate test gen-
eration on OSS introduces additional bias in the
results.

Finally, a hand-crafted and expert-verified bench-
mark like HumanEval-X offers an oracle implemen-
tation of the focal functions. If we use real-world
projects to evaluate LLM-based unit test genera-
tion and an assertion failed, we have no directly
way to distinguish whether the generated unit test
is incorrect or there is an actual defect. Previous
work (Pacheco and Ernst, 2007) in automated unit
test generation uses very simple assertions as or-
acles, such as o.equals(o). Our goal is to evaluate
the completeness and correctness of the generated
unit test functions, so we need a benchmark that
can provide the oracle implementation of the focal
functions. One interesting future work direction is
to construct a ground-truth benchmark on selected
real-world projects for neural test generation, where
all the bugs are known and the oracle implementa-
tion is available. Examples in this direction include
BugSwarm (Tomassi et al., 2019) and Magma (Haz-

imeh et al., 2020).

Acknowledgment

We thank Jiayi Guo for extending FuzzAug to
Python projects. This material is based upon work
supported by UC Noyce Initiative.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.

Saranya Alagarsamy, Chakkrit Tantithamthavorn, and
Aldeida Aleti. 2023. A3test: Assertion-augmented
automated test case generation. arXiv preprint
arXiv:2302.10352.

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Cheng-
hao Mou, Christopher Akiki, Carlos Munoz Ferran-
dis, Niklas Muennighoff, Mayank Mishra, Alex Gu,
Manan Dey, Logesh Kumar Umapathi, Carolyn Jane
Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey
Schoelkopf, Sergey Troshin, Dmitry Abulkhanov,
Manuel Romero, Michael Lappert, Francesco De
Toni, Bernardo Garcia del Rio, Qian Liu, Shamik
Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian
Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar,
David Lansky, Huu Nguyen, Danish Contractor, Luis
Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean
Hughes, Daniel Fried, Arjun Guha, Harm de Vries,
and Leandro von Werra. 2023. Santacoder: don’t
reach for the stars! Preprint, arXiv:2301.03988.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqgiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuangi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jin-
gren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023.
Qwen technical report.

Marcel Bohme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. 2017. Directed greybox
fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, CCS *17, page 2329-2344, New York, NY, USA.
Association for Computing Machinery.

Marcel Bohme, Van-Thuan Pham, and Abhik Roychoud-
hury. 2016. Coverage-based greybox fuzzing as
markov chain. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS *16, page 1032-1043, New York,
NY, USA. Association for Computing Machinery.

15650

https://arxiv.org/abs/2301.03988
https://arxiv.org/abs/2301.03988
arXiv preprint arXiv:2309.16609
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2023a.
Codet: Code generation with generated tests. In The
Eleventh International Conference on Learning Rep-
resentations.

Peng Chen and Hao Chen. 2018. Angora: Efficient
fuzzing by principled search. In 2018 IEEE Sympo-
sium on Security and Privacy (SP), pages 711-725.

Peng Chen, Yuxuan Xie, Yunlong Lyu, Yuxiao Wang,
and Hao Chen. 2023b. Hopper: Interpretative fuzzing
for libraries. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS ’23, pages 1600-1614, New York,
NY, USA. Association for Computing Machinery.

Ermira Daka and Gordon Fraser. 2014. A survey on
unit testing practices and problems. In Proceedings
of the 2014 IEEE 25th International Symposium on
Software Reliability Engineering, ISSRE ’14, page
201-211, USA. IEEE Computer Society.

David Tolnay. 2024. syn: Parser for Rust source code.

David Tolnay and Alex Crichton. 2024. proc-
macro2: A substitute implementation of the com-
piler’s ‘proc_macro‘ API to decouple token-based
libraries from the procedural macro use case.

Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and
Shuvendu K. Lahiri. 2022. Toga: A neural method
for test oracle generation. In Proceedings of the 44th
International Conference on Software Engineering,
ICSE °22, page 2130-2141, New York, NY, USA.
Association for Computing Machinery.

Gordon Fraser and Andrea Arcuri. 2011. Evosuite: au-
tomatic test suite generation for object-oriented soft-
ware. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on
Foundations of Software Engineering, ESEC/FSE
11, page 416419, New York, NY, USA. Association
for Computing Machinery.

Xiang Gao, Ripon K. Saha, Mukul R. Prasad, and Ab-
hik Roychoudhury. 2020. Fuzz testing based data
augmentation to improve robustness of deep neural
networks. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering,
ICSE ’20, page 1147-1158, New York, NY, USA.
Association for Computing Machinery.

Harrison Goldstein, Joseph W. Cutler, Daniel Dick-
stein, Benjamin C. Pierce, and Andrew Head. 2024.
Property-based testing in practice. In Proceedings of
the IEEE/ACM 46th International Conference on Soft-
ware Engineering, ICSE °24, New York, NY, USA.
Association for Computing Machinery.

Google. Atheris: A coverage-guided, native python
fuzzer. https://github.com/google/atheris.

Alex Gu, Baptiste Roziere, Hugh James Leather, Ar-
mando Solar-Lezama, Gabriel Synnaeve, and Sida
Wang. 2024. CRUXEval: A benchmark for code

reasoning, understanding and execution. In Proceed-
ings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine
Learning Research, pages 16568-16621. PMLR.

Ahmad Hazimeh, Adrian Herrera, and Mathias Payer.
2020. Magma: A ground-truth fuzzing benchmark.
Proc. ACM Meas. Anal. Comput. Syst., 4(3).

Yifeng He, Jiabo Huang, Yuyang Rong, Yiwen Guo,
Ethan Wang, and Hao Chen. 2024. Unitsyn: A large-
scale dataset capable of enhancing the prowess of
large language models for program testing. In Inter-
national Symposium on Software Testing and Analysis
(ISSTA), Vienna, Austria.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Jiabo Huang, Jianyu Zhao, Yuyang Rong, Yiwen Guo,
Yifeng He, and Hao Chen. 2024. Code representation
pre-training with complements from program execu-
tions. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing:
Industry Track (EMNLP), pages 267-278, Miami,
Florida, US. Association for Computational Linguis-
tics.

Code Intelligence. 2024. jazzer: About coverage-guided,
in-process fuzzing for the jvm. https://github.com/
CodelntelligenceTesting/jazzer.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fan-
jia Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free evalu-
ation of large language models for code. Preprint,
arXiv:2403.07974.

Vladimir Khorikov. 2020. Unit Testing Principles, Prac-
tices, and Patterns. Simon and Schuster.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell.
2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of
Sciences, 114(13):3521-3526.

Chris Lattner and Vikram Adve. 2004. Llvm: A com-
pilation framework for lifelong program analysis &
transformation. In International symposium on code
generation and optimization, 2004. CGO 2004., pages
75-86. IEEE.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. In Proceedings of the
37th International Conference on Neural Information
Processing Systems, NIPS °23, Red Hook, NY, USA.
Curran Associates Inc.

15651

https://openreview.net/forum?id=ktrw68Cmu9c
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1145/3576915.3616610
https://doi.org/10.1145/3576915.3616610
https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1109/ISSRE.2014.11
https://github.com/dtolnay/syn
https://github.com/dtolnay/proc-macro2
https://github.com/dtolnay/proc-macro2
https://github.com/dtolnay/proc-macro2
https://github.com/dtolnay/proc-macro2
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/3377811.3380415
https://doi.org/10.1145/3377811.3380415
https://doi.org/10.1145/3377811.3380415
https://doi.org/10.1145/3597503.3639581
https://github.com/google/atheris
https://proceedings.mlr.press/v235/gu24c.html
https://proceedings.mlr.press/v235/gu24c.html
https://doi.org/10.1145/3428334
https://doi.org/10.1145/3650212.3680342
https://doi.org/10.1145/3650212.3680342
https://doi.org/10.1145/3650212.3680342
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2024.emnlp-industry.21
https://doi.org/10.18653/v1/2024.emnlp-industry.21
https://doi.org/10.18653/v1/2024.emnlp-industry.21
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/CodeIntelligenceTesting/jazzer
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665

Ilya Loshchilov and Frank Hutter. 2016. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur
Zucker, Younes Belkada, Zijian Wang, Qian Liu,
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,
Wenhao Yu, Lucas Krauf3, Naman Jain, Yixuan Su,
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai,
Niklas Muennighoff, Xiangru Tang, Muhtasham
Oblokulov, Christopher Akiki, Marc Marone, Cheng-
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui,
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten
Scholak, Sebastien Paquet, Jennifer Robinson, Car-
olyn Jane Anderson, Nicolas Chapados, Mostofa Pat-
wary, Nima Tajbakhsh, Yacine Jernite, Carlos Mufioz
Ferrandis, Lingming Zhang, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm
de Vries. 2024. Starcoder 2 and the stack v2: The
next generation. Preprint, arXiv:2402.19173.

Yunlong Lyu, Yuxuan Xie, Peng Chen, and Hao Chen.
2024. Prompt fuzzing for fuzz driver generation. In
Proceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security, CCS °24,
page 3793-3807, New York, NY, USA. Association
for Computing Machinery.

Marco Castelluccio. 2024. grcov: Rust tool to collect
and aggregate code coverage data for multiple source
files.

Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond J.
Mooney, and Milos Gligoric. 2023. Learning deep
semantics for test completion. In Proceedings of the
45th International Conference on Software Engineer-
ing, ICSE °23, pages 2111-2123. IEEE Press.

Carlos Pacheco and Michael D. Ernst. 2007. Randoop:
feedback-directed random testing for java. In Com-
panion to the 22nd ACM SIGPLAN Conference on
Object-Oriented Programming Systems and Applica-
tions Companion, OOPSLA 07, page 815-816, New
York, NY, USA. Association for Computing Machin-
ery.

Annibale Panichella, Sebastiano Panichella, Gordon
Fraser, Anand Ashok Sawant, and Vincent J Hel-
lendoorn. 2020. Revisiting test smells in automat-
ically generated tests: limitations, pitfalls, and oppor-
tunities. In 2020 IEEE international conference on
software maintenance and evolution (ICSME), pages
523-533. IEEE.

Marshall Pierce. 2024. base64: encodes and decodes
base64 as bytes or utf8.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language

models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Nikitha Rao, Kush Jain, Uri Alon, Claire Le Goues, and
Vincent J. Hellendoorn. 2024. Cat-lm training lan-
guage models on aligned code and tests. In Proceed-
ings of the 38th IEEE/ACM International Conference
on Automated Software Engineering, ASE *23, page
409-420. IEEE Press.

Yuyang Rong, Peng Chen, and Hao Chen. 2020. In-
tegrity: Finding integer errors by targeted fuzzing. In
Security and Privacy in Communication Networks:
16th EAI International Conference, SecureComm
2020, Washington, DC, USA, October 21-23, 2020,
Proceedings, Part I 16, pages 360-380. Springer.

Yuyang Rong, Zhanghan Yu, Zhenkai Weng, Stephen
Neuendorffer, and Hao Chen. 2025. IRFuzzer: Spe-
cialized Fuzzing for LLVM Backend Code Generation

Yuyang Rong, Chibin Zhang, Jianzhong Liu, and Hao
Chen. 2024. Valkyrie: Improving fuzzing perfor-
mance through deterministic techniques. J. Syst.
Softw., 209(C).

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
Ilama: Open foundation models for code. Preprint,
arXiv:2308.12950.

Per Runeson. 2006. A survey of unit testing practices.
IEEE software, 23(4):22-29.

Max Schifer, Sarah Nadi, Aryaz Eghbali, and Frank
Tip. 2024. An empirical evaluation of using large
language models for automated unit test genera-
tion. IEEE Transactions on Software Engineering,
50(1):85-105.

Kosta Serebryany. 2016. Continuous fuzzing with lib-
fuzzer and addresssanitizer. In 2016 IEEE Cyberse-
curity Development (SecDev), pages 157-157. IEEE.

Kostya Serebryany. 2017. OSS-Fuzz - google’s contin-
uous fuzzing service for open source software. Van-
couver, BC. USENIX Association.

Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang,
Baishakhi Ray, and Suman Jana. 2019. Neuzz: Ef-
ficient fuzzing with neural program smoothing. In
2019 IEEE Symposium on Security and Privacy (SP),
pages 803-817.

Yutian Tang, Zhijie Liu, Zhichao Zhou, and Xiapu Luo.
2024. Chatgpt vs sbst: A comparative assessment of
unit test suite generation. IEEE Trans. Softw. Eng.,
50(6):1340-1359.

15652

https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://doi.org/10.1145/3658644.3670396
https://github.com/mozilla/grcov
https://github.com/mozilla/grcov
https://github.com/mozilla/grcov
https://doi.org/10.1109/ICSE48619.2023.00178
https://doi.org/10.1109/ICSE48619.2023.00178
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1145/1297846.1297902
https://github.com/marshallpierce/rust-base64
https://github.com/marshallpierce/rust-base64
https://doi.org/10.1109/ASE56229.2023.00193
https://doi.org/10.1109/ASE56229.2023.00193
https://doi.org/10.1109/ICSE55347.2025.00130
https://doi.org/10.1109/ICSE55347.2025.00130
https://doi.org/10.1109/ICSE55347.2025.00130
https://doi.org/10.1016/j.jss.2023.111886
https://doi.org/10.1016/j.jss.2023.111886
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/SP.2019.00052
https://doi.org/10.1109/SP.2019.00052
https://doi.org/10.1109/TSE.2024.3382365
https://doi.org/10.1109/TSE.2024.3382365

David A. Tomassi, Naji Dmeiri, Yichen Wang, An-
tara Bhowmick, Yen-Chuan Liu, Premkumar T. De-
vanbu, Bogdan Vasilescu, and Cindy Rubio-Gonzilez.
2019. Bugswarm: mining and continuously growing
a dataset of reproducible failures and fixes. In Pro-
ceedings of the 41st International Conference on Soft-
ware Engineering, ICSE ’19, page 339-349. IEEE
Press.

Michele Tufano, Dawn Drain, Alexey Svyatkovskiy,
Shao Kun Deng, and Neel Sundaresan. 2021. Unit
test case generation with transformers and focal con-
text. Preprint, arXiv:2009.05617.

Cody Watson, Michele Tufano, Kevin Moran, Gabriele
Bavota, and Denys Poshyvanyk. 2020. On learning
meaningful assert statements for unit test cases. In
Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. ACM.

Shiwen Yu, Ting Wang, and Ji Wang. 2022. Data aug-
mentation by program transformation. Journal of
Systems and Software, 190:111304.

Andreas Zeller, Rahul Gopinath, Marcel Bohme, Gor-
don Fraser, and Christian Holler. 2019. The fuzzing
book.

Hongxiang Zhang, Yuyang Rong, Yifeng He, and
Hao Chen. 2024. Llamafuzz: Large language
model enhanced greybox fuzzing. Preprint,
arXiv:2406.07714.

Jianyu Zhao, Yuyang Rong, Yiwen Guo, Yifeng He,
and Hao Chen. 2023. Understanding programs by
exploiting (fuzzing) test cases. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 10667-10679, Toronto, Canada. Association
for Computational Linguistics.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023.
Codegeex: A pre-trained model for code generation
with multilingual benchmarking on humaneval-x. In
Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD ’23,
page 5673-5684, New York, NY, USA. Association
for Computing Machinery.

Hao-Nan Zhu and Cindy Rubio-Gonzilez. 2023. On
the reproducibility of software defect datasets. In
Proceedings of the 45th International Conference on
Software Engineering, ICSE °23, pages 2324-2335.
IEEE Press.

Hong Zhu, Patrick A. V. Hall, and John H. R. May. 1997.
Software unit test coverage and adequacy. ACM Com-
put. Surv., 29(4):366—427.

A Appendix

A.1 Training Details

We follow the previous work (Radford et al., 2019;
He et al., 2024) to use an autoregressive signal for
continual training of the pre-trained base model.
We follow UniTSyn for the basic training config-
uration. Specifically, each training example is the
concatenation of the focal function and the unit test
function, joined by a \n newline symbol. Since
most of the training data are around 250 tokens (see
Figure 3), we set the maximum sequence length
to 512 for the tokenizer. We use a batch size of
128, with gradient accumulation at every 32 steps.
We use a 5 x 1073 learning rate for our training,
with cosine annealing learning rate decay for each
batch (Loshchilov and Hutter, 2016). Following
Kirkpatrick et al., we use 0.05 weight decay to make
the trained model robust to catastrophic forgetting.
We apply LoRA (Hu et al., 2022) to the model with
the rank » = 16, a = 16, and 0.05 dropout. We
train all the models, except StarCoder2, for 100
steps (approximately eight epochs) on four NVIDIA
H100-80GB GPUs. StarCoder? is trained for 200
steps due to its slower convergence rate and poor
performance.

1750

1500

1250

cy

g
1000

Freques

N
e
3

500

250

500 750 1000 1250 1500 1750 2000
Number of Tokens

Figure 3: Token distribution of the dataset.

A.2 Testing in Practice

Unit testing is a software testing technique that fo-
cuses on assessing the correctness of basic software
units (Zhu et al., 1997). In classical setups, unit
tests contain three major stages: arrange, act, and as-
sert (Khorikov, 2020). The arrange stage sets up the
input data in the correct format, the act stage invokes
the code under test, and the assert stage checks the
output of the code. If passed, these unit tests can
be used as regression tests to ensure the future cor-
rectness and security of the software (Pacheco and
Ernst, 2007). Unit tests in software repositories are

15653

https://doi.org/10.1109/ICSE.2019.00048
https://doi.org/10.1109/ICSE.2019.00048
https://arxiv.org/abs/2009.05617
https://arxiv.org/abs/2009.05617
https://arxiv.org/abs/2009.05617
https://doi.org/10.1145/3377811.3380429
https://doi.org/10.1145/3377811.3380429
https://doi.org/10.1016/j.jss.2022.111304
https://doi.org/10.1016/j.jss.2022.111304
https://arxiv.org/abs/2406.07714
https://arxiv.org/abs/2406.07714
https://doi.org/10.18653/v1/2023.findings-acl.678
https://doi.org/10.18653/v1/2023.findings-acl.678
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1109/ICSE48619.2023.00195
https://doi.org/10.1109/ICSE48619.2023.00195
https://doi.org/10.1145/267580.267590

usually structured as fest functions, each encapsu-
lating the semantics of the aforementioned three
components. Unit test functions can be identified
using language-specific hooks (He et al., 2024).

Unit Testing in Rust. Unit testing in Rust is no
different from that in other programming languages.
Rust provides a built-in test framework that al-
lows developers to specify unit test functions us-
ing the #test] or #[cfg(test)] attribute. The rustc
compiler can automatically identify these test func-
tions at compile time and includes them only in
the test build. Rust offers assertions through the
assert! macro, with variants such as assert eq! and
assert_ne! for checking equality and inequality, re-
spectively. These assertion macros are used to ver-
ify the expected behavior of the code when the tests
are executed. An example of a Rust unit test func-
tion is shown in Listing 1, illustrating a simple ar-
rangement on the first line, followed by the action
and assertion within the assert_eq! macro on the
next line.

Fuzzing in Rust. The cargo-fuzz tool pro-
vides fuzzing functionality for Rust using
LibFuzzer (Serebryany, 2016). However, instead
of being defined as a test function, a fuzz target is
specified using the fuzz_target! macro, which takes
a closure function as an argument. The closure
function provides the appropriate testing semantics.
Unlike unit test functions, where programmers
hardcode test inputs during the arrange stage,
fuzz targets supply randomized input data of type
&[u8] (a slice of 8-bit unsigned integers) to the
closure function. The closure function is then
responsible for correctly parsing the input into the
appropriate format for the arrange stage. After that,
the closure function follows the same semantics
as a unit test function: the act stage invokes the
code under test, and the assert stage verifies its
output. As shown in the example in Listing 2, the
closure function performs the arrange stage on line
7. This key design of fuzz targets enables syntax
transformation to convert a fuzz target into a unit
test function, as described in Section 2.3.

A.3 Additional Results
A4 Additional Figures

Model Type
GPT-4 API

Assert. CR Acc
95.53 75.04

Table 5: Accuracy of tests generated by LLMs. The
best results are highlighted in bold. Assert. CR: the
compile rate of the individual assertions. Acc: accuracy
of individual assertions.

Model Type
GPT-4 API

Func. CR Cov
93.90 47.94

Table 6: Evaluations of usefulness of generated unit
tests. Func. CR: the compile rate of generated unit
test functions. Cov: the average branch coverage of
generated unit test functions on the focal functions.

mutate/
generate

Valuable training data
with program's new behavior

dynamic behavior

Figure 4: Fuzzing loop for dynamic program testing.
This loop shows the process of collecting randomly gen-
erated data for augmentation.

15654

Algorithm 2 Instrumentation and Syntax Transformation

1:
2
3:
4:
5
6
7

[ee]

function REPORTERINSTRUMENTATION(fuzz_target)

AST < PARSE(fuzz_target)
entry < GETBEGIN(AST)
data < GETPARAMETERS(AST)[0]

AST’ < ADDINSTRUCTION(AST, entry*, REPORT(data))

fuzz_target’ + DumpP(AST")
return fuzz_target'

: function SYNTAXTRANSFORMATION(fuzz_target)

> Pointer to the entry point

> Add reporter the entry of AST

9: AST* < PARSE(fuzz_target)
10: body < EXTRACTBODYNODE(AST *)
11: test_header < ... > Language-specific header
12: data_template + ... > Declaring data variable
13: test_ending <+ ... > Closing this test definition
14: return test_header + data_template + body + test_ending
—e— FuzzQwen —e— FuzzLlama —e— FuzzCoder
o /\‘—/_' . 50 |
52 ®
- - S
o — | 1 S
2757 < 40
< 7¢<
40 60 80 100 40 60 80 100
N N
/(=7
o v 22.51 \//
O 701 &
X $200{,
2 S

40 60 80

N

100

40 60 80 100

N

Figure 5: The impact of scaling the number of sampled fuzzing inputs on test generation performance.

15655

