
FuzzAug: Data Augmentation by Coverage-guided
Fuzzing for Neural Test Generation

Yifeng He, Jicheng Wang, Yuyang Rong, Hao Chen

University of California, Davis



Background and Motivation

Design of FuzzAug

Evaluation

Conclusion

References

Back-up Slides



LLM-based automatic unit test generation
(neural test generation)

Using an LLM to generate unit tests involves three steps:
1. Train an LLM with a massive code corpus.
2. Prompt the LLM with the function under test (focal function).
3. Let the LLM generate a unit test function.



Test generation is challenging for LLM

Unit test functions and their focal
functions have:
1. Fundamental correspondences.
2. Different representations.
3. Imbalanced data volumes.
Previous work attempted to ad-
dress these challenges by: special-
ized training datasets with aligned
focal-test pairs.

• CAT-LM [Rao+24] aligned focal-test pairs on file-level by matching
names.

• UniTSyn [He+24] used LSP to align function-level focal-test pairs.



The remaining problem: limited dataset size
But still, current (small size) LLM-based models are not efficient enough:
1. Testing code is only 20% of the codebase [Rao+24].
2. Test corpus is limited in size for newer programming languages.

– CAT-LM: Python and Java.
– UniTSyn: Python, Java, Go, C/C++, JavaScript.

With newer languages getting popular in correctness-critical systems, for
example Rust, the problem is more severe.

Our goal: a data augmentation (DA) technique to generate meaningful unit
test data in such languages to train LLMs for unit test generation.



Background and Motivation

Design of FuzzAug

Evaluation

Conclusion

References

Back-up Slides



Key challenges of DA for test generation
1. Random data should not be purely noise.

– DA should help in exploring the program’s behavior space.

2. DA has to provide valid testing semantics.
– The added tokens should provide a correct way to parse the input and invoke

the focal function.

Our approach:
1. Use coverage-guided fuzzing to gather input data that are interesting to the

focal function.
2. Use program transformation to convert existing fuzz targets into test

templates with valid testing semantics.



FuzzAug: an overview

Figure 1: Data Augmentation by fuzzing for neural test generation.

1. extract unit test functions (Listing 1)
2. extract fuzzing targets (Listing 2).
3. instrument fuzz targets with a reporter (Listing 3) for DA inputs.
4. transform fuzz targets into a unit test template (Listing 4).
5. instantiate the templates with valid test inputs collected (Listing 5).



Fuzzing for coverage-guided random inputs

Figure 2: Fuzzing loop for dynamic
program testing

• Previous studies [Zha+23;
Hua+24] show that input-output
pairs from fuzzing are helpful for
code understanding (clone
detection, code searching, . . .).

• In FuzzAug, inputs triggering new
program behaviors are collected
for augmentation.



Unifying code representations
Inputs collected from fuzzing are great for code understanding tasks with
BERT, but how can we use them to train generative models?
1. Compiler-frontend 1 semantic-preserving transformation.

fuzz target (Listing 2)→ test template (Listing 4).
2. Instantiate test template with valid inputs (Listing 5).
3. Result: valid “unit test” functions that read and execute a

coverage-guided fuzzing input.

1For Rust, we can use procedural macros to modify the AST. We did not customize the
Rust parser.



Fuzz augmentation

Algorithm 1 Data Augmentation By Coverage-Guided Fuzzing

1: function FuzzAug(repo, N, L, timeout)
2: . repo = repository to apply FuzzAug
3: . N = number of training examples to generate
4: . L = maximum input length for collection
5: . timeout = maximum allowed fuzzing time
6: datasetaug← []
7: for all t ∈ GetFuzzTarget(repo) do
8: t′← ReporterInstrumentation(t)
9: inputs ← Fuzz(t′, timeout)
10: inputs′← Filter(λx : len(x) < L, inputs)
11: selected ← Sample(N, inputs′)
12: templates ← SyntaxTransformation(t)
13: aug ← Instantiate(templates[: N], selected)
14: datasetaug← datasetaug + aug
15: return datasetaug



Our augmented dataset

Dataset # Repo # Focal # Pairs # Tokens

Unit tests 249 14633 7881 2.5M
Fuzz 179 14790 6811 2.2M

All 249 29423 14692 4.7M

Table 1: Dataset statistics. Unit tests: the base dataset we collected from code
repositories using UniTSyn [He+24]. Fuzz: the dataset we transformed from fuzz
targets using 1, where N = 40. Augmented dataset: the combination of unit tests
and fuzz, which is used to train the fuzz models.



Background and Motivation

Design of FuzzAug

Evaluation

Conclusion

References

Back-up Slides



Evaluation setup

• Language: Rust.
• Training dataset: UniTSyn [He+24] + FuzzAug.
• Evaluation benchmark: HumanEval-X [Zhe+23].
• Compared models (details in Table 4):

– Baseline: StarCoder2 [Loz+24], CodeLlama [Roz+23],
CodeQwen1.5 [Bai+23].

– UniTSyn (no DA): UnitCoder, UnitLlama, UnitQwen.



Our research questions to answer
1. What makes generated unit tests good?

– Can FuzzAug improve the accuracy of generated test cases?
– Can FuzzAug improve the validity and completeness of generated unit tests?

2. Can FuzzAug generalize to different models?
3. Can we further scale up the dataset with FuzzAug?



Test Case Correctness

• The assertion’s input and
output have the correct
type as the focal function.

• Accurate: the generated
output matches the
execution result.

• We extract the assertion
from the generated test
cases, compile, and execute
them individually.

Model Type Assert. CR Acc

StarCoder2 PT 64.09 31.83
UnitCoder FT 65.73 32.99
FuzzCoder FT 70.98 35.50

CodeLlama IT 64.57 32.13
UnitLlama FT 70.79 34.70
FuzzLlama FT 75.67 37.07

CodeQwen1.5 PT 66.52 41.71
UnitQwen FT 73.54 46.04
FuzzQwen FT 80.91 52.20

Table 2: Accuracy of tests generated by LLMs. The
best results are highlighted in bold. Assert. CR:
the compile rate of the individual assertions. Acc:
accuracy of individual assertions.



Test Validity and Completeness

• We measure if generated
test function is complete
and Useful.

• Complete: the test function
has correct syntax and can
be compiled.

• Useful: the test function
has high branch coverage.

• We compile and execute
the test function as a
whole.

Model Type Func. CR Cov

StarCoder2 PT 45.73 9.88
UnitCoder FT 48.17 11.92
FuzzCoder FT 59.56 17.09

CodeLlama IT 54.88 15.75
UnitLlama FT 64.02 16.23
FuzzLlama FT 71.95 19.52

CodeQwen1.5 PT 68.29 20.90
UnitQwen FT 60.37 20.76
FuzzQwen FT 73.17 24.63

Table 3: Evaluations of usefulness of generated
unit tests. Func. CR: the compile rate of
generated unit test functions. Cov: the average
branch coverage of generated unit test functions
on the focal functions.



Further scaling FuzzAug I

40 60 80 100
N

75

80

As
se

rt.
 C

R

40 60 80 100
N

40

50

Ac
cu

ra
cy

40 60 80 100
N

60

70

Fu
nc

. C
R

40 60 80 100
N

17.5

20.0

22.5

25.0

Co
ve

ra
ge

FuzzQwen FuzzLlama FuzzCoder

Figure 3: The impact of scaling FuzzAug on test generation performance.



Further scaling FuzzAug II
We train models with N = 40,60,80,100 fuzzing samples.
• Scaling up FuzzAug is not the primary factor influencing performance.
• The quality of data augmentation plays a more crucial role.

– driven by the test semantics of the fuzz targets and coverage-guided inputs.
• We recommend N at a scale comparable to the original training dataset.

– For tasks with a clear oracle (i.e, software engineering),
keep a balance between real and syntactic data.



Background and Motivation

Design of FuzzAug

Evaluation

Conclusion

References

Back-up Slides



Conclusion: key take-aways

• We propose FuzzAug, the first data augmentation technique for
LLM-based unit test generation.

• Inputs obtained from fuzzing are useful; they provide diversity and
coverage to execute the focal functions.

• Fuzz targets are useful after transformation; they provide testing
semantics for parsing inputs and invoking focal functions.

• We evaluate FuzzAug on Rust and show that it improves the quality of
LLM-based unit test generation:
– individual test cases (assertions), in both compile rate (type checking) and

accuracy (matching outputs)
– unit test functions, in both completeness (correct syntax, can be compiled)

and usefulness (branch coverage).



Thanks For Your Attention!
Any questions?



Background and Motivation

Design of FuzzAug

Evaluation

Conclusion

References

Back-up Slides



[Rao+24] Nikitha Rao, Kush Jain, Uri Alon, Claire Le Goues, and
Vincent J. Hellendoorn. “CAT-LM Training Language Models on
Aligned Code and Tests”. In: Proceedings of the 38th IEEE/ACM
International Conference on Automated Software Engineering. ASE ’23.
Echternach, Luxembourg: IEEE Press, 2024, pp. 409–420. isbn:
9798350329964. doi: 10.1109/ASE56229.2023.00193. url:
https://doi.org/10.1109/ASE56229.2023.00193.

[He+24] Yifeng He et al. “UniTSyn: A Large-Scale Dataset Capable of
Enhancing the Prowess of Large Language Models for Program
Testing”. In: International Symposium on Software Testing and
Analysis (ISSTA). Vienna, Austria, Sept. 16–20, 2024. url:
https://doi.org/10.1145/3650212.3680342.

https://doi.org/10.1109/ASE56229.2023.00193
https://doi.org/10.1109/ASE56229.2023.00193
https://doi.org/10.1145/3650212.3680342


[Zha+23] Jianyu Zhao, Yuyang Rong, Yiwen Guo, Yifeng He, and Hao Chen.
“Understanding Programs by Exploiting (Fuzzing) Test Cases”. In:
Findings of the Association for Computational Linguistics: ACL 2023.
Toronto, Canada: Association for Computational Linguistics, July
2023, pp. 10667–10679. doi:
10.18653/v1/2023.findings-acl.678. url:
https://aclanthology.org/2023.findings-acl.678/.

[Hua+24] Jiabo Huang et al. “Code Representation Pre-training with
Complements from Program Executions”. In: Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing:
Industry Track (EMNLP). Miami, Florida, US: Association for
Computational Linguistics, Nov. 2024, pp. 267–278. doi:
10.18653/v1/2024.emnlp-industry.21. url:
https://aclanthology.org/2024.emnlp-industry.21/.

https://doi.org/10.18653/v1/2023.findings-acl.678
https://aclanthology.org/2023.findings-acl.678/
https://doi.org/10.18653/v1/2024.emnlp-industry.21
https://aclanthology.org/2024.emnlp-industry.21/


[Zhe+23] Qinkai Zheng et al. “CodeGeeX: A Pre-Trained Model for Code
Generation with Multilingual Benchmarking on HumanEval-X”. In:
Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. KDD ’23. Long Beach, CA, USA:
Association for Computing Machinery, 2023, pp. 5673–5684. isbn:
9798400701030. doi: 10.1145/3580305.3599790. url:
https://doi.org/10.1145/3580305.3599790.

[Loz+24] Anton Lozhkov et al. StarCoder 2 and The Stack v2: The Next
Generation. 2024. arXiv: 2402.19173 [cs.SE]. url:
https://arxiv.org/abs/2402.19173.

[Roz+23] Baptiste Rozière et al. Code Llama: Open Foundation Models for Code.
2023. arXiv: 2308.12950 [cs.CL].

[Bai+23] Jinze Bai et al. Qwen Technical Report. 2023. url:
arXiv%20preprint%20arXiv:2309.16609.

[Pie24] Marshall Pierce. base64: encodes and decodes base64 as bytes or utf8.
Sept. 2024. url:
%7Bhttps://github.com/marshallpierce/rust-base64%7D.

https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2308.12950
arXiv%20preprint%20arXiv:2309.16609
%7Bhttps://github.com/marshallpierce/rust-base64%7D


Background and Motivation

Design of FuzzAug

Evaluation

Conclusion

References

Back-up Slides



Figure 5: Simplified examples extracted from project base64 [Pie24] in our
collected Rust dataset. Each example listing corresponds to one step in Figure 1.



Models

Table 4: Our model selection for evaluation.
Baseline: names of the pre-trained or instruction-tuned baseline models.
Type: pre-trained (PT), instruction-tuned (PT).
UniTSyn: corresponding models fine-tuned using the UniTSyn [He+24] dataset.
FuzzAug: corresponding models fine-tuned using UniTSyn + FuzzAug.

Base Model

Method StarCoder2 CodeQwen1.5 CodeLlama

UniTSyn UnitCoder UnitQwen UnitLlama
FuzzAug FuzzCoder FuzzQwen FuzzLlama



Prompt and post-processing

1 fn has_close_elements(numbers: Vec<f32>, threshold: f32) -> bool {
... }

2 // Check the correctness of `has_close_elements `
3 #[cfg(test)]
4 mod tests {
5 use super::*;
6 #[test]
7 fn test_has_close_elements() {
8 assert_eq!(has_close_elements(

Listing 1: Example prompt used for test generation. Import statements are removed
for simplicity.

• We use the focal function as the prompt, concatenated with a NL
instruction and the test header, following UniTSyn [He+24].

• We avoid overly intricate post-processing, just adding the missing
brackets and semicolons.


	Background and Motivation
	Design of FuzzAug
	Evaluation
	Conclusion
	References
	References
	Back-up Slides

