Evaluating Program Semantics Reasoning
with Type Inference in System F’

Yifeng He!, Luning Yang?, Christopher Castro Gaw Gonzalo', Hao Chen'
University of California, Davis, ?University of Hong Kong
{yfhe, ccgawgonzalo,chen}qucdavis.edu, l4yang@connect.hku.hk

Abstract

Large Language Models (LLMs) are increasingly integrated into the soft-
ware engineering ecosystem. Their test-time compute (TTC) reasoning
capabilities show significant potential for understanding program logic and
semantics beyond mere token recognition. However, current benchmarks
for code reasoning lack a formal, program-centric deductive framework to
ensure sound evaluation, and are incapable of assessing whether models
genuinely reason about program semantics or merely exploit superficial
associations between natural language and code tokens. To bridge this gap,
we introduce TF-Bench, a benchmark designed to evaluate LLM reasoning
based on type inference in System F, a task we refer to as program semantics
reasoning. By employing verified transformations to remove semantically
irrelevant natural language, we construct TF-Benchy,yre, a purely semantics-
driven variant of TF-Bench. Our analysis reveals substantial limitations in
state-of-the-art LLMs, with the best-performing LLM (Claude-3.7-sonnet)
achieving only 55.85% accuracy on TF-Benchy,yre. Additionally, we propose
two novel metrics to assess robustness and the effectiveness of test-time
reasoning, underscoring critical limitations in current LLM capabilities and
highlighting essential directions for future research.

1 Introduction

The ability to understand and write programs has become an important factor in eval-
uating the intelligence of large language models (LLMs) [1H3]. More recently, test-time
compute (TTC), also referred to as learn to reason, has become a new scaling paradigm to
further improve the performance of generative LLMs via reinforcement post-training [4, 5].
These reasoning models show promising results in software-related tasks. However, popular
tasks in code generation and understanding fail to fully reveal LLMs’ prowess at reasoning
about program semantics, i.e. their ability to understand program flows and underlying
logic. Hence, popular code generation benchmarks often fail to uncover differences between
the training algorithms used to build reasoning LLMs.

Previous work on program reasoning for LLMs often involves generating properties for
code to satisfy [6}|7]] or predicting the execution behavior of the code [8, 9]. However, these
tasks require the LLMs to generate tool-specific properties or behaviors, failing to isolate
reasoning capability from knowledge of specific downstream tasks. Furthermore, due to
the lack of a clearly defined formal system within the programming language, it is difficult
to attribute poor performance to a lack of reasoning capability. Therefore, to rigorously
understand the fundamental reasoning capabilities of LLMs as an upstream evaluation, we
need a benchmark that: 1. The oracle is well-defined in a formal deductive system, and the

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and
Benchmarks.

result can be produced and verified by the system. 2. The evaluation of program semantics
reasoning can be conducted within the programming language itself, isolated from the
knowledge requirement about specific downstream tools.

Furthermore, natural language (NL) elements within code, such as comments and the
names of identifiers, assist programmers in reading code. However, they do not affect how
developers and compilers analyze the logic, data flow, and defects in the code. For instance,
renaming functions and variables does not impact how the program operates or the outputs
it generates. Previous work [10] showed that the performance of language models on these
benchmarks can be heavily influenced by NL elements within code snippets. These NL
elements are not related to the program semantics, and can often lead LLM-based approaches
to misunderstand programs [11, 12].

Program semantics (e.g., denotational, operational, and axiomatic) of programming lan-
guages describe program behavior, as viewed by the compiler. They are invariant to the
NL components of programs. By contrast, a programmer’s understanding of a program
is influenced considerably by its NL components. We call this the cognitive semantics of a
program. The structural logic behind the programs depends on the program semantics, not
the cognitive semantics. The gap between these two types of semantics often leads to bugs
and security vulnerabilities in LLM-based software applications. We are not aware of any
existing benchmark that addresses this gap in the ability of LLMs to reason about program
semantics, a task we refer to as program semantics reasoning.

As a first step, we use type inference, or predicting the type signature from function imple-
mentations, as a task in reasoning on program semantics. There are three main benefits of
using type inference for this evaluation: 1. Type inference is grounded in System F [13]],
which is a formal natural deduction system, providing a well-defined task to evaluate LLMs’
reasoning abilities. 2. Type signatures are unique and can be easily verified. For a provided
task, there is only one correct signature, whose correctness can be verified by the Hindley-
Milner algorithm [14, 15] implemented in the compiler. 3. Type signatures can be inferred
solely from provided dependencies (details are described in [Section 3.1). We propose to use
type inference as an upstream reasoning task, which is not affected by nor helped by the NL
components, unlike downstream applications and generation tasks.

We present TF-Bench, a novel evaluation benchmark for program semantics reasoning. We
construct TF-Bench using function-level type inference in Haskell [16] for its strict type
system with easy-to-understand syntax. E] Haskell’s core language is based on System £ [13]],
which is parametric polymorphic, ensuring the diversity of tasks in the benchmark. In addi-
tion to System F', Haskell also supports ad-hoc polymorphism [17] (bounded overloading,
System F [18]), which is also included in TE-Bench for task diversity. Tasks in TF-Bench
are self-contained with function dependencies explicitly provided, so we can remove NL
pieces in the benchmark to construct TF-Benchy,,e without losing the logic chain, making
it sound to evaluate reasoning models without the influence of NL-contaminating tokens.
Type inference is a form of natural deduction, which makes TF-Bench a naturally suitable
benchmark for emerging reasoning LLMs. To the best of our knowledge, TF-Bench is the
first work to introduce and address the problem of PL semantics reasoning.

Our contributions. 1. We introduce TF-Bench and its NL-free variant TF-Benchyyre,

a pair of novel benchmarks each containing 188 tasks for program reasoning. [2. We
comprehensively evaluate 64 LLMs with varying parameter sizes (Section 4.3). Our findings
indicate that on TF-Benchy,yre, the leading API-access LLM, Claude-3.7-sonnet, only achieves
55.85% accuracy. 3. Based on the two-variant design of TF-Bench, we propose two novel
evaluation metrics: semantic robustness and reasoning effectiveness (Section 4.5).
These metrics are useful in understanding the effects of the applied TTC post-training
methods in doing deductive reasoning about program semantics. 4. We provide a detailed
analysis of LLMs fine-tuned on code or math corpora . Our results suggest that
LLMs fine-tuned on code tend to overfit NL cues, whereas those fine-tuned on math are
more likely to solve the task through reasoning.

! As similar to mathematical functions with little syntax noise, please see{Appendix Al
Zhttps://github.com/SecuritylLab-UCD/TF-Bench

https://github.com/SecurityLab-UCD/TF-Bench

2 Background and Related Work

2.1 Learning to understand programs

Large language models (LLMs) have made remarkable advances in the field of natural
language processing. To leverage the power of LLMs in software engineering, earlier work
has addressed the LLM’s ability to learn code representation for a better understanding
of programs. Code-related tasks for LLMs can be categorized into generation tasks [19-
26|] and understanding tasks [27-31]. Predicting programming concepts offers a way to
evaluate LLMs’ reasoning abilities, utilizing the LLMs to generate program predicates [32],
invariants [6], and specifications [33} 34]. While showing potential for downstream tasks,
these approaches rely on LLMs’ proficiency on using third-party tools and their interfaces,
which often results in poor performance. Consequently, evaluations in these settings provide
limited insight into LLMs’ fundamental reasoning about programming itself. In comparison,
TF-Bench offers a language-centric deductive evaluation system, focusing on the fundamental
reasoning capabilities of LLMs.

Predicting type annotations using LLMs has been studied to address some limitations of
traditional rule-based type inference. This application has been explored through various
approaches [35-41]. While a promising downstream application of LLMs, predicting type
annotations often relies on memorizing commonly used type names, instead of reasoning
about programs in terms of logical structures and semantics. TypeGen [40] made promising
progress in this direction by introducing domain-aware chain-of-thought prompts via static
analysis, thereby enhancing task realism. However, due to the unsound, gradual, and
optional nature of Python’s type system [42], their task formulation remains inadequate for
rigorously evaluating the reasoning capabilities of LLMs as a benchmark.

2.2 Propositions as types

The connection between logical reasoning and programming can be traced back to the
Curry-Howard Isomorphism [43, 44], or propositions as types [45]. The core idea is that each
proposition in logic corresponds to a type in a programming language, and vice versa. For
instance, a proposition A implies a proposition B (denoted as A = B), corresponding
to a function mapping from type A to type B (denoted as A — B). Since implementing a
function involves invoking other defined functions to transform inputs of specific types into
an output of another (or the same) type, we can interpret these defined functions as logical
assumptions. Then the process of implementing the function itself can be viewed as a proof
of the proposition. Thus, the concept of proofs as programs emerges. This paradigm has been
widely applied in security areas like formal verification and machine-aided proving [46-48].
Drawing from type theory, type inference is inherently a reasoning task for LLMs.

2.3 Task perturbation to evaluate reasoning robustness

As LLMs demonstrate high performance on various benchmarks, concerns about contami-
nation and overfitting have led researchers to focus on the reasoning processes behind their
predictions, rather than the predictions themselves. This line of research often employs task
perturbation, where input data is systematically modified to evaluate the model’s robustness.

Task perturbation in code understanding involves semantic-preserving code transforma-
tions [11} 12} 149]. While this approach has proven effective for supervised tasks with labeled
data, it is challenging to adapt to generative models. Furthermore, such methods often
lack the flexibility to modify both inputs and desired outputs. TF-Bench overcomes these
limitations, as the output type signature can also be rewritten along with its dependencies,
thereby requiring the LLMs to have a more comprehensive reasoning about the program.

Recently, similar ideas have been applied to evaluate the reasoning processes of LLMs in
mathematics tasks, as studies suggest that LLMs often solve math problems by memorizing
patterns from training data rather than engaging in formal reasoning [50]. In this direction,
various work [51-53] has been proposed to evaluate the reasoning capabilities of LLMs
on math question-answering tasks. Type inference is also an instance of formal natural
deduction reasoning; we provide a more detailed discussion on this issue in[Appendix E|

3 Design of TF-Bench

TF-Bench utilizes type inference in System F' [13] to test the program reasoning ability of
LLMs. The task is to generate the final type signature of a function given its implementation
and the type signatures of all invoked functions. We designed a three-stage pipeline to
construct TF-Bench, ensuring self-contained type inference tasks, as outlined in

Task extractor Dependency solver Alpha-rewrite
W packages on Hackage — [&] search dependencies — binding names
BB functions from AST ® prepend types NL types & variabes

Figure 1: Pipeline to construct TF-Bench. Tasks in TF-Bench are created from Haskell
functions with the required type dependencies provided, then rewritten to remove natural
language while ensuring soundness.

3.1 Benchmark construction

Soundness is crucial when designing benchmarks to evaluate LLMs, particularly in program
analysis, logical reasoning, and robustness. In our case, this requires that all type conversions
and function mappings in the task are explicitly provided, and that the inference results are
decidable within the task’s static form. Therefore, the benchmark language must satisfy the
following properties: 1. It implements a formal deductive system, specifically the System F..
2. It provides concise, standalone type signatures separate from implementation, allowing
us to explicitly present type dependencies that form a closed logical chain for reasoning. 3. It
should be popular enough so that LLMs have been trained on a sufficient amount of data.

Building a benchmark to understand LLM’s program reasoning ability via type inference
requires a well-typed language with a soundness guarantee. To this end, we selected Haskell
as the foundation for TF-Bench. First, Haskell is based on a variant of the Hindley-Milner
polymorphic type system [54], whose soundness has been proven [55]. Second, Haskell is
one of the most popular programming languages with type soundness [56, 57], and has
been included in popular pre-training datasets such as The Stack V2 [58] with a sufficient
amount of training data. Finally, Haskell is a pure functional language where functions are
first-class citizens, allowing us to provide a clear and concise task formulation with all type
dependencies explicitly provided. Our objective is to evaluate the ability of LLMs to reason
about program semantics through type inference, a critical and typical form of reasoning,
rather than merely generating code.

We build the tasks in TF-Bench at the function level. We only include the three basic categories
of functions in TF-Bench for evaluation purposes: monomorphic, parametric, and ad-hoc
functions. Monomorphic functions are the most basic building blocks in programming,
where each function is instantiated with a single, fixed type. Parametric polymorphisms are
generic functions that can be instantiated with any type. Their type signatures are defined
as templates with type variables, enabling flexibility and reusability. Ad-hoc polymorphic
functions can be instantiated with any type that satisfies specific constraints. This form of
polymorphism is commonly implemented using type classes, subtyping, or overloading,
allowing tailored behavior for different types while maintaining type safety. In TF-Bench,
we include the definition of the type classes in the task dependencies to ensure that the tasks
are self-contained. We provide an example for each type of function in[Appendix Figure 9|

Package selection. We use the standard Haskell Prelude [16]] as the foundation for con-
structing TF-Bench. All functions in the Prelude are defined within the ghc-internal li-
brary [59]]. The Haskell Prelude, extensively reviewed by the Haskell core library committee,
is widely regarded as a reliable and authoritative source for constructing TF-Bench. These
functions represent some of the most frequently used code in Haskell and have been adopted
in the standard libraries of other programming languages. Therefore, we consider the
Prelude a more representative, reliable, and feasible source for building TF-Bench.

Task extraction. For each function in the Prelude, we extract its type signature and im-
plementation from the abstract syntax treen (AST) parsed from the source repository. For
Ad-hoc polymorphic functions, each typically corresponds to a generic implementation
accompanied by multiple specific instantiations. In such cases, we retain the generic imple-
mentation as a separate task and include a selection of non-overlapping instantiations in the
benchmark. In total, we collected 188 tasks from the Prelude, where 26.6% are monomorphic
functions, 32.4% are parametric polymorphisms, and 41.0% are bounded quantification.

Dependencies solving. For each candidate task, we conduct dependency solving to
provide a self-contained reasoning setup. In type systems, the result of type inference for
an implemented function depends on the types of all invoked functions. This notion of
type dependencies parallels the concept of assumptions in proof theory and logic. For
example, proving the proposition A A B requires the assumption that A is true and B is
true. The type dependencies in TF-Bench tasks are assumptions in a proof. To address this,
we extract all function invocation nodes from the AST, and retrieve their corresponding
type signatures from the Haskell API search engine Hoogle [60]. This step ensures that
each task is self-contained and establishes a closed logical chain for our evaluation. After
resolving dependencies, we validate the tasks by compiling them with the oracle, and
confirm completeness by manually reviewing all tasks to ensure that no dependencies are
missing. We provide an example of a task in TF-Bench in|Listing 1}

not :: Bool — Bool f2 o (t1 - T1) —» [t1] - ([t1], [t1])
() s (b>c)>((a—>b) >a—=c f3 0 T1 - T1
span :: (a — Bool) — [al]l — ([al, [a]) fo o (11 > t2) - (3 = t1) = t3->t2
break p = span (not . p) flp=f2 (f3 °fa" p)
-- complete the following type -- complete the following type

signature for “break’ signature for “f1°
break :: fl ::

(a = Bool) = [a] — ([al,[al) (t1 - T1) - [t1] = ([t1], [t1])

Listing (1) Example task for the break function Listing (2) The task in after alpha-rewrite

Figure 2: Example task in TF-Bench.

3.2 Removing natural language from tasks

Previous research indicates that LLMs for code understanding predominantly rely on super-
ficial natural language features rather than genuinely comprehending program semantics [[10,
11]. A similar pattern has been observed in generative LLMs applied to mathematical rea-
soning tasks [53]. Furthermore, the Haskell Prelude, introduced by Jones, predates the
knowledge cutoff of most, if not all, existing models. Therefore, related data might already
have been included in the training data. To investigate the true ability of generative LLMs in
program reasoning, it is essential to identify equivalent forms of the tasks in TF-Bench.

To rigorously assess the LLMs’ reasoning ability on program semantics while minimizing
the effects of potential data contamination, we designed three rewrite operators aimed at
removing natural language elements from TF-Bench. These operators transform code tokens
containing natural language components into NL-free equivalents. The rewrite operators
are implemented with the type signature op :: Task — Either String Task and are
verified to be commutative and associative under Kleisli composition [61]. We call the
composition of these operators alpha-rewrite. Alpha-rewrite does not alter the operational
and denotational semantics of the program. The validity of the rewritten tasks is confirmed
through successful compilation, ensuring their semantic integrity. We show an example
rewritten task of break in Our rewrite operators can also be dynamically adjusted
with different, and even attacking [11}62], naming patterns to accommodate further data
contamination. We provide an analysis of the impact of each rewrite operator in[Appendix D]

Rewriting NL types. We refer to all type names in the code that contain natural language
elements as NL types. In Haskell, NL types are written with an uppercase letter as their initial
character, distinguishing them from type variables to facilitate easier parsing. Examples of

NL types include primitive data types such as Int, Bool, and Char, as well as the names of
type classes like Eq and Ord. We rewrite all NL types using a standardized format: a capital
letter T followed by a numerical identifier based on their order of appearance in the code.

Rewriting type variables. Type variables in generic functions are lowercase letters. By
community convention, these variables typically begin with the lowercase letter a and
proceed alphabetically. We rewrite all type variables using a lowercase letter t followed by
a numerical identifier corresponding to their order of appearance in the code. Since type
variables do not inherently contain any natural language information, applying this rewrite
operation to TF-Bench individually should have no impact on the model’s performance,
even if the model relies on memorized NL elements to answer the questions.

Rewriting binding names. Haskell, as a functional programming language, treats every-
thing as a function, including operators and variables. To unify terminology, we use the term
binding to refer to all of these entities. We standardize all binding names by rewriting them
as a lowercase letter f followed by a numerical identifier based on their order of appearance.
In Haskell, infix and prefix operators are interchangeable. For instance, the prefix notation
add x vy is equivalent to the infix notation x “add” y. Similarly, the infix notation x + y
is equivalent to the prefix notation (+) x y, with the parentheses indicating the operator.
To preserve the semantic structure, we maintain the original position of operators during
rewriting, ensuring that the transformed tasks adhere to valid Haskell syntax.

3.3 Model input

The input prompt is divided into three components: the system prompt, the instruction
prompt, and the task prompt. We use the same system and instruction prompts for all models,
as depicted in[Appendix Figure 5] to guide the models toward a successful generation. We
concatenate the system prompt and instruction prompt, and send the concatenation using
the ‘system’ role. However, due to the API difference, such a role is unavailable for OpenAl
reasoning models, so we concatenate all three components as a single input.

The task prompt is similar to the examples in As outlined in [Section 3.1} we
extract functions from Haskell packages to construct the tasks, and provide addition type
dependencies for each task. For each extracted function, we concatenate its dependencies
separated by new line symbols, and prepend the concatenation to the function definition.
Following established work [22} 63| |64], we add an instructive comment in the task to instruct
the models to predict the type of the implemented function. Finally, we append a task-
specific hook in the form of “function_name' :: to the end of the input prompt, providing
a clear starting point for the LLMs.

3.4 Evaluation methodology

Criteria. We evaluate whether the generated results match the ground truth by checking
for a-equivalence [65]. By definition, two types are considered a-equivalence if their only
difference lies in the renaming of bound variables, making them indistinguishable for all
practical purposes. Under a-equivalence, two polymorphic types are considered equivalent
if they are structurally identical, differing only in the naming of type variables. For example,
the typesmap :: (a = b) = [a] = [blandmap :: (¢ = d) = [c] — [d]are
alpha-equivalent because their type variables are bound in the same order.

Our evaluation pipeline is summarized in First, we design a static analyzer to
locate and define all missing types in the ground-truth type signature after alpha-rewrite.
With these definitions, along with the ground-truth and LLM-generated type signatures, we
construct a proof template. We then formally verify whether the two type signatures are

a-equivalence. If the proof fails, we treat the LLM’s answer as incorrect and include it in our
error analysis (see for details).

Previous work on using generative models for type inference measures matching up to
parametric [40]. This metric considers two types to match if they share the same outermost

structure. For instance, [Int] and [Char] are considered match up to parametric because
they share the common outermost type constructor []. However, this evaluation approach

Ground-truth
w/ type definitions

Ground-truth T.ype-def N
static analyzer

type signarue
TF-Bench task
Task generation N N
prompt

Figure 3: Pipeline to evaluate LLMs on TF-Bench.

Error
1 analyzer
_)(Alpha—equiv)
prover

LLM-inferenced

. Proof template
type signature

is not valid under System F', since the inner type may not implement the same required
trait (or overload the same required operators/functions) [17]. Therefore, we adopt the more
rigorous a-equivalence metric to evaluate the results of the models in TF-Bench.

Defining new types. After the model generates a type signature, we provide definitions
for all referenced types to ensure the proof is self-contained. To this end, we parse the
type signatures into ASTs using tree-sitter [66]], and propose a static analyzer that reads
and classifies all types in the AST. Our analyzer traverses the AST in a depth-first manner,
extracting all type classes, type names, and type constructors. For each type constructor,
we also record its arity (i.e., the number of type arguments). We then add semantically

valid empty definitions for all newly introduced types in the proof. The design of the static
analyzer is detailed in

Proving alpha-equivalence. Rather than text-level matching, we formally verify that the
generated type signature is a-equivalence to the ground truth. LLMs need not reproduce
the exact type signature, as long as provided the type variables occur in the same order.
We prove for equivalence using type equality coercions [67]. To handle a-equivalence for
polymorphic types with bounded quantification, we enable impredicative types [68,69] in
our proofs. The proof template is given in If the proof compiles, the two type
signatures are guaranteed a-equivalent. This formal approach eliminates false positives
and false negatives during evaluation on TF-Bench, thereby ensuring the soundness of our
benchmark design. Therefore, we report only accuracy in our experiments.

4 Experiments

4.1 Experimental setup

Our objective is to evaluate the performance of both state-of-the-art API-access models and
open-access models across different sizes. We show the results of top-performing models in
which include the latest models from OpenAI GPT, Anthropic Claude, Google
Gemini, DeepSeek, and Qwen. GPT, Claude, and Gemini are commercial API-access models,
while DeepSeek and Qwen are open-access models with pre-trained weights available online.
However, due to compute limitations, we also access DeepSeek through the API. We also
provide a comprehensive list of models and results in the [Appendix Table 6] In total, we
evaluate 64 models on TF-Bench and TF-Benchy,yre.

We follow previous studies [2,[70] on code-related tasks to evaluate all models in a zero-shot
setting. We use the default temperature and sampling hyperparameters for all models to
allow maximum performance. To ensure the validity of the results, we run the models three
times and report the average performance, and we observe that all models have standard
error < 0.05. We utilize Ollama [71] to set up the environment to run the open-access models.

We apply straightforward post-processing strategies (Appendix C) to the generation results

to ensure consistency and comparability across models.

4.2 Research questions

In our experiments, we address the following research questions to understand the perfor-
mance of various models on TF-Bench and TF-Benchpyre: RQ1 Performance evaluation: We
assess the performance of the state-of-the-art API-based and open-source (OSS) models
on TF-Bench and TF-Benchpyre. RQ2 Semantics robustness: We examine the robustness of

Table 1: Main evaluation results. TTC: enabled test-time compute reasoning. Acc, AcCpure:
accuracy on TF-Bench and TF-Benchy,yre. RS: robustness score. The highest accuracy is in
bold, and the second is underlined.

Model Version TTIC Acc Accpure RS

Claude-3.5-haiku 2024-10-22 X 80.85 33,51 41.45
Claude-3.5-sonnet 2024-06-20 X 85.46 48.97 57.3
Claude-3.7-sonnet 2025-02-19 v 90.42 55.85 61.77
GPT-4o0 2024-11-20 X 84.57 38.12 45.08
GPT-0O1 2024-12-17 v 88.30 50.00 56.63
GPT-O3-mini 2025-01-31 v 90.43 4840 53.52
GPT-03 2025-04-16 v 81.91 52.66 64.29
GPT-O4-mini 2025-04-16 v 87.77 4894 55.76
DeepSeek-V3 2025-03-25 X 83.51 43.62 52.23
DeepSeek-R1 2025-01-20 v 86.70 44.15 50.92
Gemini-2.5-flash Preview-04-17 v 83.51 51.06 61.14
Gemini-2.5-pro Preview-03-25 v 86.70 51.60 59.52
30B-A3B v 81.38 4043 49.68
Qwen3 32B v 8794 43.09 49.00
235B-A22B-FP8 v 85.11 4415 51.87

these models against alpha-rewrites to understand their capability to handle underlying
semantics and logical reasoning in programs. RQ3 Reasoning effectiveness: We investigate
the effectiveness of different reasoning strategies by comparing the performance increase
after turning on TTC reasoning. RQ4 Impact of post-training/fine-tuning: We evaluate the
performance gains achieved by comparing base models with their fine-tuned versions.

4.3 Which are the best performers on TF-Bench?

In our evaluation, the top two models are OpenAl’s O3 and Anthropic’s Claude-3.7-sonnet,
both of which are reasoning models. On TF-Bench, O3-mini and Claude-3.7-sonnet are
nearly tied, with accuracy 90.43% and 90.42%, respectively. Among pre-trained open-source
models, Qwen3-32B achieves the best performance, correctly solving 87.94% of the tasks.

On TF-Benchyyre, with natural language removed, we observe a significant drop in perfor-
mance across all models. Requiring the models to reason about the code purely based on
the program semantics, TF-Benchy, e serves as a more challenging variant of TF-Bench and
offers distinct insights. Claude-3.7-sonnet is the best-performing model on TF-Bench,yre,
achieving 55.85% accuracy. O3, the current flagship reasoning model from OpenAl, comes
in second on TF-Benchy,yre with 52.66% accuracy. We provide additional evaluation results

in and an analysis of the models’ error types in

4.4 Semantics robustness

Previous studies [10, 11] have demonstrated that code understanding models are vulnerable
to adversarial attacks through identifier name perturbations. Our benchmark design, which
includes both a baseline version TF-Bench and a pure variation TF-Bench,re, enables us
to systematically measure LLMs’ robustness in reasoning about program semantics. In
this section, we assess the robustness of LLMs on program reasoning by introducing task
perturbations through alpha-rewrites. We define the Robustness Score (RS) as the model’s
sensitivity to these alpha-rewrites. Let Acc and Accpyre represent the performance of a given
model m on TE-Bench and TF-Benchy,ure, respectively, RS(m) = Accpure (1) /Acc(m).

We present the robustness scores of the top-performing models in Among the eval-
uated models, O3 and Claude-3.7-sonnet achieve the highest robustness scores of 64.29 and
61.77, respectively, mirroring their superior performance on TF-Benchy,,re. These robustness
scores quantify each model’s ability to maintain consistent performance when confronted
with alpha-rewrites, serving as a confidence metric for their semantic reasoning capabilities.

4.5 Reasoning effectiveness

Test-time compute reasoning (TTC) is a new scaling paradigm for LLMs, offering a pathway to
enable reasoning capabilities in LLMs using natural language. Recent research demonstrates
its effectiveness across various benchmarks [4} 5} 72]. However, there remains a critical
gap in the systematic evaluation of TTC specifically applied to reasoning about programs.
While performance improvements on standard generation benchmarks are evident, it is
challenging to disentangle whether these gains stem from the model’s enhanced reasoning
capabilities or simply from further contamination by natural language cues. This distinction
is crucial for understanding the true potential and limitations of developing TTC models.

Our novel two-variant benchmark de-
sign, consisting of TF-Bench and TF- Table 2: Reasoning effectiveness of top LLMs.
Benchpure, enables a precise assess-
ment of TTC’s effectiveness on pro- Model TIC Acc Accpwe RE
gram semantics. Both benchmarks

are grounded in System F' reason- Qwen3-235B-FP8 ‘); ggég ii% 1.37
ing of program semantics, providing : :

a program-centric deductive frame- (Claude-3.7-somnet % 8777 4681 54
work for evaluating LLMs. How- v 9042 5585

ever, improvements in accuracy on . X 7819 30.32
TF-Bench alone could potentially be Gemini-2.5-flash v 8351 5106 >

attributed to contamination or over-
fitting to natural language elements
rather than genuine reasoning capabilities. To understand TTC's effectiveness, we propose a
metric that differentiates the genuine program reasoning improvements from natural lan-
guage contamination. We utilize the ratio of accuracy improvements on TF-Benchpyre compared
to TF-Bench as reasoning effectiveness (RE) to evaluate the impact of TTC,

AcCpure (Mite) — AcCpure() Apure

RE (1, m) = _
(meie, m) Acc(mye) — Acc(m) A

For our reasoning effectiveness analysis, we focus on models that allow manual control of the
TTC mode to ensure evaluation fairness. Currently, only Claude-3.7-sonnet [73], Gemini-2.5-
flash [74], and Qwen3-235B-FP8 [75], served using vLLM [76], support this feature. However,
our methodology extends beyond these three models. Future research can apply this analysis
to any reasoning models with access to the base model before reinforcement learning.
presents our reasoning effectiveness results. Gemini-2.5-flash achieves the highest reasoning
effectiveness of 3.90, with Claude-3.7-Sonnet showing comparable effectiveness at 3.41. A
higher RE indicates that the TTC method more effectively improves reasoning capabilities
with less reliance on benchmark contamination. RE < 1 suggests the applied TTC method
or reinforcement learning failed to develop actual reasoning capabilities, instead promoting
overfitting and benchmark contamination.

4.6 Impacts of fine-tuning

Data used for supervised fine-tuning can also impact the reasoning ability of LLMs signifi-
cantly. In this section, we investigate the effects of fine-tuning on code and math datasets,
and compare the performance change of LLMs after fine-tuning. We present the results in
Fine-tuning on code corpus does not consistently result in performance improve-
ments. Among the evaluated models, DeepSeek-V2 benefits the most from fine-tuning on
code. However, Qwen2.5-7B experiences an absolute decrease of - 4.79 on TE-Bench after
fine-tuning on code data. Similarly, Mistral-22B and Qwen?2.5-72B exhibit decreases of -
8.51 and - 4.26, respectively, on TF-Benchyyre. In contrast, fine-tuning on math data yields
positive results across both TF-Bench and TF-Benchy,yre.

Another interesting observation emerges when analyzing the effects of fine-tuning the same
model families on different data. For this analysis, we focus on two model architectures:
Mistral and Qwen2. Our experiments reveal that fine-tuning these models on code some-
times leads to a decline in performance, while fine-tuning on math consistently results

Table 3: Result comparison of fine-tuning. FT Corpus: the corresponding fine-tuning corpus.
A, Apure: absolute increase in accuracy after fine-tuning.

FT Corpus Base Model (FT Model) Size Acc FT Acc A Accpure FT Accpure Apure

Gemma (CodeGemma) 7B 4894 53.19 +4.25 7.45 12.23 +4.78
16B 2979 5532 +2553 798 1596 +7.98
DeepSeek-V2 (-Coder) 53¢p 38'3) 085 14255 1117 3670 +2553
Code \fistral (Codestral) 2B 6117 6330 +213 1968 1117 -851
15B 3032 3670 +638 691 9.04 +213
Qwen2.5 (-Coder) 7B 6596 6117 -479 2128 2128 0.00
3B 7447 8245 1798 3617 3191 -426
Mistral (Mathstral) 7B 4521 4734 +213 7.9 1543 1744
Math 7B 4043 4309 +266 319 1064 +745
Qwen2 (Math) 70B 6383 7128 +745 2181 3351 4117

in performance gains. Furthermore, models fine-tuned on code exhibit much smaller im-
provements on TF-Benchy,e compared to TF-Bench, leading to RE < 1, or even RE < 0.
By contrast, the same models fine-tuned on math demonstrate greater performance im-
provements on TF-Benchy,yre. This finding suggests that fine-tuning on math might enhance
the models’ abstract deductive reasoning capabilities, which also translates effectively to
program reasoning and software-related tasks.

5 Conclusion

In this paper, we present TF-Bench, a novel benchmark designed to evaluate the ability of
language models for program reasoning. TE-Bench focuses on type inference in System F,
utilizing Haskell syntax and functions to provide a deductive framework for LLM reasoning
evaluation. Focusing on the semantic gap between program semantics and cognitive seman-
tics, TF-Bench includes two novel metrics, providing a more comprehensive evaluation of
the robustness of LLM reasoning and the effectiveness of reasoning-focused post-training.
TF-Bench aims to inspire further research on evaluating LLMs’ reasoning capabilities with
respect to the semantics of programming languages.

Acknowledgment

We thank Yiwen Guo for valuable feedback on the manuscript. We also thank Boqi Zhao
and Hezhi Xie for contributing to the initial experimental setup.

References

[1] Josh Achiam et al. Gpt-4 technical report. 2024. arXiv: 2303 .08774 [cs.CL]. urL: https:
//arxiv.org/abs/2303.08774.

[2] Al@Meta Llama Team. The Llama 3 Herd of Models. 2024. arXiv: 2407 .21783 [cs.AI]. urL:
https://arxiv.org/abs/2407.21783,

[8] Gemma Team. Gemma: Open Models Based on Gemini Research and Technology. 2024. arXiv:
2403.08295 [cs.CL]. urL:|https://arxiv.org/abs/2403.08295.

[4] OpenAl. OpenAl o1 System Card. 2024. urL: https://cdn.openai.com/ol-system-
card.pdt.

[5] DeepSeek-Al et al. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement
Learning. 2025. arXiv: 2501 .12948 [cs.CL]. ur: https://arxiv.org/abs/2501,
17948,

[6] Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng Yin. “Can Large Language
Models Reason about Program Invariants?” In: Proceedings of the 40th International Conference
on Machine Learning. Ed. by Andreas Krause et al. Vol. 202. Proceedings of Machine Learning
Research. PMLR, 23-29 Jul 2023, pp. 27496-27520. urt: https://proceedings .mlr,
press/v202/pei23a.html.

10

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://cdn.openai.com/o1-system-card.pdf
https://cdn.openai.com/o1-system-card.pdf
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://proceedings.mlr.press/v202/pei23a.html
https://proceedings.mlr.press/v202/pei23a.html

[10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

(18]
[19]

[20]

[21]

[22]

[23]

[24]

Thanh Le-Cong, Bach Le, and Toby Murray. Can LLMs Reason About Program Semantics? A
Comprehensive Evaluation of LLMs on Formal Specification Inference. 2025. arXiv:2503.04779
[cs.PL]J.urL:|https://arxiv.org/abs/2503.04779.

Naman Jain et al. “LiveCodeBench: Holistic and Contamination Free Evaluation of Large Lan-
guage Models for Code”. In: The Thirteenth International Conference on Learning Representations.
2025. urL: https://openreview.net/forum?id=chfJJYC3iL.

Alex Gu et al. “CRUXEval: A Benchmark for Code Reasoning, Understanding and Execution”.
In: Forty-first International Conference on Machine Learning. 2024. urL: https://openreview,
net/forum?id=Ffpg52swvg.

Toufique Ahmed and Premkumar Devanbu. “Multilingual training for software engineering”.
In: Proceedings of the 44th International Conference on Software Engineering. ICSE '22. ACM, May
2022. por: 10 . 1145/3510003 . 3510049, urL: http://dx.doi.org/10. 1145/
351003 . 3510049,

Zhou Yang, Jieke Shi, Junda He, and David Lo. “Natural attack for pre-trained models of
code”. In: Proceedings of the 44th International Conference on Software Engineering. ICSE "22.
Pittsburgh, Pennsylvania: Association for Computing Machinery, 2022, pp. 1482-1493. 1sBN:
9781450392211. por:|10.1145/3510003.3510146. urL: https://doi.org/10.1145/
I TNNN3 . 35 TATLA,

Shangqing Liu, Bozhi Wu, Xiaofei Xie, Guozhu Meng, and Yang Liu. “Contrabert: Enhanc-
ing code pre-trained models via contrastive learning”. In: 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE). IEEE. 2023, pp. 2476-2487.

Jean-Yves Girard. “The system F of variable types, fifteen years later”. In: Theoretical Computer
Science 45 (1986), pp. 159-192. 1ssn: 0304-3975. por: https://doi.org/10.1016/0304
3975(86)90044-7. urL: https://www.sciencedirect.com/science/article/
p11/0304397586900447.

Roger Hindley. “The principal type-scheme of an object in combinatory logic”. In: Transactions
of the american mathematical society 146 (1969), pp. 29-60. por: https://doi.org/10.2307/
1995158,

Robin Milner. “A theory of type polymorphism in programming”. In: Journal of computer
and system sciences 17.3 (1978), pp. 348-375. por: https://doi.org/10.1016/0022 -
0000(78)90014-4.

Simon Peyton Jones. Haskell 98 language and libraries: the revised report. Cambridge University
Press, 2003.

Philip Wadler and Stephen Blott. “How to make ad-hoc polymorphism less ad hoc”. In:
Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’89. Austin, Texas, USA: Association for Computing Machinery, 1989, pp. 60-76. 1sBN:
0897912942. por: 10.1145/75277 . 75283\ ure: https://doi.org/10.1145/75277,
/5783.

Edward Lee et al. “Qualifying System F<:: Some Terms and Conditions May Apply”. In:
Proceedings of the ACM on Programming Languages 8. OOPSLA1 (2024), pp. 583-612.

Baptiste Roziere et al. Code Llama: Open Foundation Models for Code. 2023. arXiv:2308.12950
[cs.CL]J.urL:|https://arxiv.org/abs/2308.12950.

Weimin Xiong, Yiwen Guo, and Hao Chen. “The Program Testing Ability of Large Language
Models for Code”. In: Conference on Empirical Methods in Natural Language Processing (EMINLP).
Miami, Florida, USA, Nov. 12-16, 2024.

Mayank Mishra et al. Granite Code Models: A Family of Open Foundation Models for Code Intelligence.
2024. arXiv: 2405.04324 [cs.AI]. urL:https://arxiv.org/abs/2405.04324/
Yifeng He et al. “UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large
Language Models for Program Testing”. In: Proceedings of the 33rd ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis. ISSTA 2024. Vienna, Austria: Association for
Computing Machinery, 2024, pp. 1061-1072. 1sBN: 9798400706127. por: 10.1145/3650212 ,
3680342, urL:https://doi.org/10.1145/3650212.3680342,

Hongxiang Zhang, Yuyang Rong, Yifeng He, and Hao Chen. LLAMAFUZZ: Large Language
Model Enhanced Greybox Fuzzing. 2024. arXiv: 2406.07714 [cs.CR], urL: https://arxiv,
org/abs/2406.07714.

Yunlong Lyu, Yuxuan Xie, Peng Chen, and Hao Chen. “Prompt Fuzzing for Fuzz Driver
Generation”. In: Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Commu-
nications Security. CCS "24. Salt Lake City, UT, USA: Association for Computing Machinery,
2024, pp. 3793-3807. 1sBN: 9798400706363. po1: 10.1145/3658644.3670396. UrRL: https:
//do1l.0org/10.1145/3658644.3670396.

11

https://arxiv.org/abs/2503.04779
https://arxiv.org/abs/2503.04779
https://arxiv.org/abs/2503.04779
https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=Ffpg52swvg
https://openreview.net/forum?id=Ffpg52swvg
https://doi.org/10.1145/3510003.3510049
http://dx.doi.org/10.1145/3510003.3510049
http://dx.doi.org/10.1145/3510003.3510049
https://doi.org/10.1145/3510003.3510146
https://doi.org/10.1145/3510003.3510146
https://doi.org/10.1145/3510003.3510146
https://doi.org/https://doi.org/10.1016/0304-3975(86)90044-7
https://doi.org/https://doi.org/10.1016/0304-3975(86)90044-7
https://www.sciencedirect.com/science/article/pii/0304397586900447
https://www.sciencedirect.com/science/article/pii/0304397586900447
https://doi.org/https://doi.org/10.2307/1995158
https://doi.org/https://doi.org/10.2307/1995158
https://doi.org/https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2405.04324
https://arxiv.org/abs/2405.04324
https://doi.org/10.1145/3650212.3680342
https://doi.org/10.1145/3650212.3680342
https://doi.org/10.1145/3650212.3680342
https://arxiv.org/abs/2406.07714
https://arxiv.org/abs/2406.07714
https://arxiv.org/abs/2406.07714
https://doi.org/10.1145/3658644.3670396
https://doi.org/10.1145/3658644.3670396
https://doi.org/10.1145/3658644.3670396

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

Hongxiang Zhang, Hao Chen, Muhao Chen, and Tianyi Zhang. “Active Layer-Contrastive
Decoding Reduces Hallucination in Large Language Model Generation”. In: Conference on
Empirical Methods in Natural Language Processing. Suzhou, China, Nov. 5-9, 2025.

Yifeng He, Jicheng Wang, Yuyang Rong, and Hao Chen. “FuzzAug: Data Augmentation by
Coverage-guided Fuzzing for Neural Test Generation”. In: Conference on Empirical Methods in
Natural Language Processing. Suzhou, China, Nov. 5-9, 2025.

Srinivasan Iyer, Joannis Konstas, Alvin Cheung, and Luke Zettlemoyer. “Summarizing Source
Code using a Neural Attention Model”. In: Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany: Association for
Computational Linguistics, Aug. 2016, pp. 2073-2083. por:(10.18653/v1/P16-1195, URL:
https://aclanthology.org/P16-1195

Miltiadis Allamanis, Hao Peng, and Charles Sutton. “A Convolutional Attention Network for
Extreme Summarization of Source Code”. In: Proceedings of The 33rd International Conference on
Machine Learning. Ed. by Maria Florina Balcan and Kilian Q. Weinberger. Vol. 48. Proceedings of
Machine Learning Research. New York, New York, USA: PMLR, 20-22 Jun 2016, pp. 2091-2100.
urL: https://proceedings.mlr.press/v48/allamanisl16.html

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. “code2vec: learning distributed
representations of code”. In: Proc. ACM Program. Lang. 3.POPL (Jan. 2019). por:[10 . 1145/
3290353, urt: https://doi.org/10.1145/3290353,

Jianyu Zhao, Yuyang Rong, Yiwen Guo, Yifeng He, and Hao Chen. “Understanding Programs
by Exploiting (Fuzzing) Test Cases”. In: Findings of the Association for Computational Linguistics
(ACL). Toronto, Canada, July 9-14, 2023. urt: https://doi.org/10.18653/v1/2023,
findings-acl.678

Jiabo Huang et al. “Code Representation Pre-training with Complements from Program
Executions”. In: Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing: Industry Track. Miami, Florida, US: Association for Computational Linguistics,
Nov. 2024, pp. 267-278. por: 10 . 18653/v1/2024 .emnlp-1industry.21. urt: https:
//aclanthology.org/2024.emnlp-industry.21/

Ashish Hooda et al. “Do large code models understand programming concepts? counterfactual
analysis for code predicates”. In: Proceedings of the 41st International Conference on Machine
Learning. ICML24. Vienna, Austria: JMLR.org, 2024.

Lezhi Ma, Shangqing Liu, Yi Li, Xiaofei Xie, and Lei Bu. SpecGen: Automated Generation of
Formal Program Specifications via Large Language Models. 2025. arXiv:2401.08807 [cs.SE].
urL: https://arxiv.org/abs/2401.08807

Thanh Le-Cong, Bach Le, and Toby Murray. Can LLMs Reason About Program Semantics? A
Comprehensive Evaluation of LLMs on Formal Specification Inference. 2025. arXiv: 2503 .04779
[cs.PL].urL: https://arxiv.org/abs/2503.04779

Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. “TypeWriter: neural type
prediction with search-based validation”. In: Proceedings of the 28th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations of Software Engineering.
ESEC/FSE 2020. Virtual Event, USA: Association for Computing Machinery, 2020, pp. 209-220.
1sBN: 9781450370431. por: [10 . 1145/3368089 . 3409715, urL: https://doi.org/10)
1145/3368089.3409715.

Kevin Jesse, Premkumar T. Devanbu, and Toufique Ahmed. “Learning type annotation: is big
data enough?” In: Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE 2021. Athens,
Greece: Association for Computing Machinery, 2021, pp. 1483-1486. 1sBN: 9781450385626.
por: 10 . 1145/3468264 . 3473135, urL: |https://doi.org/10.1145/3468264 ,
34 /37135,

Amir M. Mir, Evaldas Lato$kinas, Sebastian Proksch, and Georgios Gousios. “Type4Py: prac-
tical deep similarity learning-based type inference for python”. In: Proceedings of the 44th
International Conference on Software Engineering. ICSE 22. ACM, May 2022. por: 10 . 1145/
3510003.3510124. urt:|http://dx.doi.org/10.1145/3510003.3510124|
Miltiadis Allamanis, Earl T. Barr, Soline Ducousso, and Zheng Gao. “Typilus: neural type
hints”. In: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI 2020. London, UK: Association for Computing Machinery, 2020,
pp- 91-105. 1sBN: 9781450376136. por: 10.1145/3385412.3385997, ure: https://doi,
org/10.1145/3385412.3385997.

12

https://doi.org/10.18653/v1/P16-1195
https://aclanthology.org/P16-1195
https://proceedings.mlr.press/v48/allamanis16.html
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3290353
https://doi.org/10.18653/v1/2023.findings-acl.678
https://doi.org/10.18653/v1/2023.findings-acl.678
https://doi.org/10.18653/v1/2024.emnlp-industry.21
https://aclanthology.org/2024.emnlp-industry.21/
https://aclanthology.org/2024.emnlp-industry.21/
https://arxiv.org/abs/2401.08807
https://arxiv.org/abs/2401.08807
https://arxiv.org/abs/2503.04779
https://arxiv.org/abs/2503.04779
https://arxiv.org/abs/2503.04779
https://doi.org/10.1145/3368089.3409715
https://doi.org/10.1145/3368089.3409715
https://doi.org/10.1145/3368089.3409715
https://doi.org/10.1145/3468264.3473135
https://doi.org/10.1145/3468264.3473135
https://doi.org/10.1145/3468264.3473135
https://doi.org/10.1145/3510003.3510124
https://doi.org/10.1145/3510003.3510124
http://dx.doi.org/10.1145/3510003.3510124
https://doi.org/10.1145/3385412.3385997
https://doi.org/10.1145/3385412.3385997
https://doi.org/10.1145/3385412.3385997

[39]

[40]

[41]

[42]
[43]

[44]

[45]
[46]
[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Qing Huang et al. “Prompt-tuned Code Language Model as a Neural Knowledge Base for Type
Inference in Statically-Typed Partial Code”. In: Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering. ASE "22. Rochester, MI, USA: Association for
Computing Machinery, 2023. 1sBN: 9781450394758. por:|10.1145/3551349.3556912. urL:
https://doi.org/10.1145/3551349.3556912]

Yun Peng, Chaozheng Wang, Wenxuan Wang, Cuiyun Gao, and Michael R Lyu. “Generative
type inference for python”. In: 2023 38th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE. 2023, pp. 988-999. urL: https://doi.org/10.1109/
ASEL6279.72073. 000371,

Yun Peng et al. “Static inference meets deep learning: a hybrid type inference approach for
python”. In: Proceedings of the 44th International Conference on Software Engineering. ICSE "22.
ACM, May 2022. por: (10 . 1145/3510003 . 3510038/ urL: http://dx.doi.org/10,
1145/3510003.3510038.

Guido van Rossum and Ivan Levkivskyi. PEP 483 — The Theory of Type Hints. PEP 488. 2014.
urL: https://peps.python.org/pep-0483/.

Haskell B Curry. “Functionality in combinatory logic”. In: Proceedings of the National Academy of
Sciences 20.11 (1934), pp. 584-590. por: https://doi.org/10.1073/pnas.20.11.584,
William A Howard et al. “The formulae-as-types notion of construction”. In: To HB Curry:
essays on combinatory logic, lambda calculus and formalism 44 (1980), pp. 479-490. URL: https:
//www.dcc.fc.up.pt/~acm/howard2.pdf.

Philip Wadler. “Propositions as types”. In: Commun. ACM 58.12 (Nov. 2015), pp. 75-84. 1ssN:
0001-0782. por:(10.1145/2699407, ure: https://doi.org/10.1145/2699407,
Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. “The coq proof assistant a tutorial”.
In: Rapport Technique 178 (1997).

Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Isabelle/HOL: a proof assistant for
higher-order logic. Springer, 2002.

Xavier Leroy. “Formal verification of a realistic compiler”. In: Commun. ACM 52.7 (July 2009),
pp- 107-115. 1ssN: 0001-0782. por:(10.1145/1538788. 1538814, urL:|https://doi.org/
10.1145/1538788.1538814.

Shiwen Yu, Ting Wang, and Ji Wang. “Data Augmentation by Program Transformation”. In: J.
Syst. Softw. 190.C (Aug. 2022). 1ssN: 0164-1212. por: 10.1016/J.jss.2022.111304, URrL:
https://doi.org/10.1016/j.jss.2022.111304!

Bowen Jiang et al. “A Peek into Token Bias: Large Language Models Are Not Yet Genuine Rea-
soners”. In: Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing.
Miami, Florida, USA: Association for Computational Linguistics, Nov. 2024, pp. 4722-4756.
por:|10.18653/v1/2024 .emnlp-main.272. urL: https://aclanthology.org/
2024 .emnlp-main.272/.

Aryan Gulati et al. “Putnam-AXIOM: A Functional and Static Benchmark for Measuring
Higher Level Mathematical Reasoning”. In: The 4th Workshop on Mathematical Reasoning and Al
at NeurIPS’24.2024. urL: https://openreview.net/forum?id=YXnwlZeQyf.

Iman Mirzadeh et al. GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning
in Large Language Models. 2024. arXiv:[2410.05229 [cs.LG]l urL: https://arxiv.org/
abs/2410.05229.

Xiaodong Yu, Ben Zhou, Hao Cheng, and Dan Roth. ReasonAgain: Using Extractable Symbolic
Programs to Evaluate Mathematical Reasoning. 2024. arXiv:[2410.19056 [cs.AIL] urL: https:
//arxiv.org/abs/2410.19056.

Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. “A history of Haskell: being
lazy with class”. In: Proceedings of the Third ACM SIGPLAN Conference on History of Programming
Languages. HOPL III. San Diego, California: Association for Computing Machinery, 2007,
pp- 12-1-12-55. 1sBN: 9781595937667. pot: (10 . 1145 /1238844 . 1238856, UrL: https :
//doi.org/10.1145/1238844.1238856.

A K. Wright and M. Felleisen. “A Syntactic Approach to Type Soundness”. In: Information and
Computation 115.1 (1994), pp. 38-94. 1ssN: 0890-5401. por: |https://doi.org/10.1006/
inco.1994.1093. urL: https://www.sciencedirect.com/science/article/
p11/50890540184710935.

GitHut 2.0: A Small Place to Discover Languages in GitHub. 2024. ure: https://madnight,
github.io/githut/#/pull requests/2024/1.

TIOBE Index for April 2025.2025. urL:|https://www.tiobe.com/tiobe-index/!

13

https://doi.org/10.1145/3551349.3556912
https://doi.org/10.1145/3551349.3556912
https://doi.org/10.1109/ASE56229.2023.00031
https://doi.org/10.1109/ASE56229.2023.00031
https://doi.org/10.1145/3510003.3510038
http://dx.doi.org/10.1145/3510003.3510038
http://dx.doi.org/10.1145/3510003.3510038
https://peps.python.org/pep-0483/
https://doi.org/https://doi.org/10.1073/pnas.20.11.584
https://www.dcc.fc.up.pt/~acm/howard2.pdf
https://www.dcc.fc.up.pt/~acm/howard2.pdf
https://doi.org/10.1145/2699407
https://doi.org/10.1145/2699407
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1016/j.jss.2022.111304
https://doi.org/10.1016/j.jss.2022.111304
https://doi.org/10.18653/v1/2024.emnlp-main.272
https://aclanthology.org/2024.emnlp-main.272/
https://aclanthology.org/2024.emnlp-main.272/
https://openreview.net/forum?id=YXnwlZe0yf
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.19056
https://arxiv.org/abs/2410.19056
https://arxiv.org/abs/2410.19056
https://doi.org/10.1145/1238844.1238856
https://doi.org/10.1145/1238844.1238856
https://doi.org/10.1145/1238844.1238856
https://doi.org/https://doi.org/10.1006/inco.1994.1093
https://doi.org/https://doi.org/10.1006/inco.1994.1093
https://www.sciencedirect.com/science/article/pii/S0890540184710935
https://www.sciencedirect.com/science/article/pii/S0890540184710935
https://madnight.github.io/githut/#/pull_requests/2024/1
https://madnight.github.io/githut/#/pull_requests/2024/1
https://www.tiobe.com/tiobe-index/

(58]
[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]
[71]
[72]
(73]
[74]
[75]

[76]

[77]

(78]

Anton Lozhkov et al. StarCoder 2 and The Stack v2: The Next Generation. 2024. arXiv:2402.19173
[cs.SE].urL: https://arxiv.org/abs/2402.19173,

Haskell Core Libraries Committee. ¢hc-internal: Basic libraries. Version 9.1001.0. 2024. URL:
https://hackage.haskell.org/package/ghc-internal.

Neil Mitchell. Haskell API search engine. Version 5.0.18.4. 2024. urL: https://github.com/
ndmitchell/hoogle.

H. Kleisli. “Proc. Amer. Math. Soc. 16 (1965), 544-546". In: Proceedings of the American Mathe-
matical Society 16 (1965), pp. 544-546. 1ssN: 0002-9939. por: 10.1090/50002-9939-1965-
W17 7024=4,

Pavol Bielik and Martin Vechev. “Adversarial Robustness for Code”. In: Proceedings of the 37th
International Conference on Machine Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119.
Proceedings of Machine Learning Research. PMLR, 13-18 Jul 2020, pp. 896-907. URL: https:
//proceedings.mlr.press/v119/bielik20a.html.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, Yejin Choi, and Hannaneh Hajishirzi. “Re-
framing Instructional Prompts to GPTk’s Language”. In: Findings of the Association for Com-
putational Linguistics: ACL 2022. Dublin, Ireland: Association for Computational Linguistics,
May 2022, pp. 589-612. por: |10 . 18653 /v1/2022 . findings-acl. 50. urL: https:
//aclanthology.org/2022.findings-acl.50.

Bei Chen et al. “CodeT: Code Generation with Generated Tests”. In: The Eleventh International
Conference on Learning Representations. 2023. urL: https://openreview.net/forum?id=
kKT rwb8Cmu9c.

Roy L. Crole. “Alpha equivalence equalities”. In: Theoretical Computer Science 433 (2012), pp. 1-19.
1ssN: 0304-3975. por: https://doi.org/10.1016/j.tcs.2012.01.030. urL: https:
//www.scilencedirect.com/science/article/p11/50304397512000667.

Max Brunsfeld. Tree-sitter. 2024. urL: |https ://tree-sitter . github. 10/ tree-
sitter/.

Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin Donnelly. “Sys-
tem F with type equality coercions”. In: Proceedings of the 2007 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation. TLDI ’07. Nice, Nice, France: Associ-
ation for Computing Machinery, 2007, pp. 53-66. I1sBN: 159593393X. por:(10.1145/1190315,
1190324, ure: https://doi.org/10.1145/1190315.1190324,

Alejandro Serrano, Jurriaan Hage, Dimitrios Vytiniotis, and Simon Peyton Jones. “Guarded
impredicative polymorphism”. In: Proceedings of the 39th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI 2018. Philadelphia, PA, USA: Association
for Computing Machinery, 2018, pp. 783-796. 1sBN: 9781450356985. por: 10.1145/3192366 ,
3192389. urt:https://doi.org/10.1145/3192366.3192389,

Alejandro Serrano, Jurriaan Hage, Simon Peyton Jones, and Dimitrios Vytiniotis. “A quick look
atimpredicativity”. In: vol. 4. ICFP. New York, NY, USA: Association for Computing Machinery,
Aug. 2020. por:|10.1145/3408971) urL:|https://doi.org/10.1145/3408971.

An Yang et al. “Qwen2. 5 Technical Report”. In: arXiv preprint arXiv:2412.15115 (2024).
Ollama. 2024. urL: https://github.com/ollama/ollama,

Niklas Muennighoff et al. “s1: Simple test-time scaling”. In: arXiv preprint arXiv:2501.19393
(2025).

Anthropic. Building with extended thinking. 2025. urL: https://docs.anthropic.com/
en/docs/build-with-claude/extended-thinking.

Google Gemini. Gemini thinking. 2025. urL: https://ai.google.dev/gemini-api/
docs/thinking.

Qwen Team. Quwen3: Think Deeper, Act Faster. 2025. urL: https://qwenlm.github.io/
blog/qwen3/.

Woosuk Kwon et al. “Efficient Memory Management for Large Language Model Serving
with PagedAttention”. In: Proceedings of the 29th Symposium on Operating Systems Principles.
SOSP "23. Koblenz, Germany: Association for Computing Machinery, 2023, pp. 611-626. 1SBN:
9798400702297. por: 10.1145/3600006 .3613165, urL: https://doil.org/10.1145/
3600NN6.3613165.

Dan Hendrycks et al. “Measuring Mathematical Problem Solving With the MATH Dataset”.
In: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2).2021. urL: https://openreview.net/forum?id=7Bywt2mQsCel

Karl Cobbe et al. Training Verifiers to Solve Math Word Problems. 2021. arXiv: 2110 . 14168
lcs.LGI.

14

https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://hackage.haskell.org/package/ghc-internal
https://github.com/ndmitchell/hoogle
https://github.com/ndmitchell/hoogle
https://doi.org/10.1090/S0002-9939-1965-0177024-4
https://doi.org/10.1090/S0002-9939-1965-0177024-4
https://proceedings.mlr.press/v119/bielik20a.html
https://proceedings.mlr.press/v119/bielik20a.html
https://doi.org/10.18653/v1/2022.findings-acl.50
https://aclanthology.org/2022.findings-acl.50
https://aclanthology.org/2022.findings-acl.50
https://openreview.net/forum?id=ktrw68Cmu9c
https://openreview.net/forum?id=ktrw68Cmu9c
https://doi.org/https://doi.org/10.1016/j.tcs.2012.01.030
https://www.sciencedirect.com/science/article/pii/S0304397512000667
https://www.sciencedirect.com/science/article/pii/S0304397512000667
https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/
https://doi.org/10.1145/1190315.1190324
https://doi.org/10.1145/1190315.1190324
https://doi.org/10.1145/1190315.1190324
https://doi.org/10.1145/3192366.3192389
https://doi.org/10.1145/3192366.3192389
https://doi.org/10.1145/3192366.3192389
https://doi.org/10.1145/3408971
https://doi.org/10.1145/3408971
https://github.com/ollama/ollama
https://docs.anthropic.com/en/docs/build-with-claude/extended-thinking
https://docs.anthropic.com/en/docs/build-with-claude/extended-thinking
https://ai.google.dev/gemini-api/docs/thinking
https://ai.google.dev/gemini-api/docs/thinking
https://qwenlm.github.io/blog/qwen3/
https://qwenlm.github.io/blog/qwen3/
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://openreview.net/forum?id=7Bywt2mQsCe
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

[79]
(80]

(81]

(82]

[83]
(84]

[85]
[86]
(87]
(88]
(89]
[90]
[91]
[92]
[93]
[94]
[95]
[96]

[97]

[98]
[99]

[100]
[101]

[102]

[103]

Dag Prawitz. Natural deduction: A proof-theoretical study. Courier Dover Publications, 2006.
Anthropic. A postmortem of three recent issues. urL: https ://www . anthropic.com/
engineering/a-postmortem-of-three-recent-issues.

Cheng-Yu Hsieh et al. “Distilling Step-by-Step! Outperforming Larger Language Models
with Less Training Data and Smaller Model Sizes”. In: Findings of the Association for Compu-
tational Linguistics: ACL 2023. Toronto, Canada: Association for Computational Linguistics,
July 2023, pp. 8003-8017. por:{10 . 18653/v1/2023.findings-acl.507! ure:|https:
//aclanthology.org/2023.findings-acl.507/.

Marah Abdin et al. Phi-3 technical report: A highly capable language model locally on your phone.
2024. arXiv: 2404 .14219 [cs.CL]. urL: https://arxiv.org/abs/2404.14219,
Albert Q Jiang et al. Mistral 7B. 2023. arXiv: 2310.06825 [cs.CL],

Albert Q Jiang et al. Mixtral of Experts. 2024. arXiv: 2401 . 04088 [cs.LG], urL: |https:
//arxiv.org/abs/2401.04088.

Can Xu et al. “Wizardlm: Empowering large language models to follow complex instructions”.
In: arXiv preprint arXiv:2304.12244 (2023).

Gemma Team. Gemma 2: Improving Open Language Models at a Practical Size. 2024. arXiv: 2408 |
00118 [cs.CL]. urL: https://arxiv.org/abs/2408.00118,

DeepSeek-Al. DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model.
2024. arXiv: 2405.04434 [cs.CL]l

Al@Meta. Llama 3 Model Card. 2024. urL: https://github.com/meta-1lama/1lama3/
blob/main/MODEL_CARD.md.

Al@Meta. Llama 3.1 Model Card. 2024. urL: https://github.com/meta-1lama/1lama-
models/blob/main/models/1lama3 1/MODEL CARD.md.

Al@Meta. Llama 3.2 Model Card. 2024. urL: https://github.com/meta-1lama/1lama-
models/blob/main/models/llama3 2/MODEL CARD.md.

Al@Meta. Llama 3.3 Model Card. 2024. urL: https://github.com/meta-1lama/1lama-
models/blob/main/models/llama3_3/MODEL_CARD.md.

An Yang et al. Qwen?2 Technical Report. 2024. arXiv: 2407 . 10671 [cs.CL]. ureL: https:
//arxiv.org/abs/2407.10671.

Qwen Team. QwQ: Reflect Deeply on the Boundaries of the Unknown. 2024. urL: https://
gwenlm.github.io/blog/qwqg-32b-preview/.

Yu Zhao et al. “Marco-o1: Towards open reasoning models for open-ended solutions”. In: arXiv
preprint arXiv:2411.14405 (2024).

NexusFlow. Introducing Athene-V2: Advancing Beyond the Limits of Scaling with Targeted Post-
training. 2024. urL: https://nexusflow.ai/blogs/athene-v2|

CodeGemma Team. CodeGemma: Open Code Models Based on Gemma. 2024. arXiv: 2406.11409
[cs.CLJ. urL:https://arxiv.org/abs/2406.11409,

Qinkai Zheng et al. “CodeGeeX: A Pre-Trained Model for Code Generation with Multilingual
Benchmarking on HumanEval-X". In: Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 2023, pp. 5673-5684.

Mistral-Al. Codestral: Hello, World! Empowering developers and democratising coding with Mistral
Al 2024. urL: https://mistral.ai/news/codestral/.

Qihao Zhu et al. DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence.
2024. arXiv: 2406.11931 [cs.SE]. urL:https://arxiv.org/abs/2406.11931]
Mistral-Al. Mathstral. 2024. urL: https://mistral.ai/news/mathstral/.

Qwen Team. Introducing Qwen2-Math. 2024. urL: https://qwenlm.github.io/blog/
agwen2-math/.

Benjamin C. Pierce. “Bounded quantification is undecidable”. In: Proceedings of the 19th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL "92. Albuquerque,
New Mexico, USA: Association for Computing Machinery, 1992, pp. 305-315. 1sBN: 0897914538.
por:|10.1145/143165.143228| urL: https://dol.org/10.1145/143165.143228,
Henry DeYoung, Andreia Mordido, Frank Pfenning, and Ankush Das. “Parametric Subtyping
for Structural Parametric Polymorphism”. In: Proc. ACM Program. Lang. 8 POPL (Jan. 2024).
por:10.1145/3632932| ure: https://doi.org/10.1145/3632932|

15

https://www.anthropic.com/engineering/a-postmortem-of-three-recent-issues
https://www.anthropic.com/engineering/a-postmortem-of-three-recent-issues
https://doi.org/10.18653/v1/2023.findings-acl.507
https://aclanthology.org/2023.findings-acl.507/
https://aclanthology.org/2023.findings-acl.507/
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2405.04434
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://nexusflow.ai/blogs/athene-v2
https://arxiv.org/abs/2406.11409
https://arxiv.org/abs/2406.11409
https://arxiv.org/abs/2406.11409
https://mistral.ai/news/codestral/
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931
https://mistral.ai/news/mathstral/
https://qwenlm.github.io/blog/qwen2-math/
https://qwenlm.github.io/blog/qwen2-math/
https://doi.org/10.1145/143165.143228
https://doi.org/10.1145/143165.143228
https://doi.org/10.1145/3632932
https://doi.org/10.1145/3632932

Appendix

Table of Contents

|A" Motivating example|

|C Post-processing|

ID Effects of the rewrite operators|

[E Bridging type inference to mathematical reasoning]

[Proving type equivalence in Haskell|

[F.1 Static analysis to define missing types|. oL
[F2™ Constructing proofs of type equivalence]

|G Error analysis|

[H Additional figures|

[Additional evaluation results|
1 API- m 3

L2 Open-accessmodels|

[Limitations and Future Work]

|l 1 Analzsis of fine—tuning
J].2 Downstream application|

.3 Futurework|

17

17

18

18

18

19
19

21

23

26
26
26

16

A Motivating example

map :: (a = b) — [a] = [b] map :: (a = b) = [a] = [b]

ord :: Char — Int chr :: Int — Char

cs :: [Char] xs :x [Int]

xs = map ord cs ys = map chr xs

-- complete the following type -- complete the following type
signature for “xs° signature for “ys~

xs :: [Int] ys :: [Char]

Figure 4: Examples of type inference tasks similar to TF-Bench tasks.

the understanding of the function’s logic. As shown in|Figure 4} correctly inferring the types
of xs and ys requires deductive reasoning through the logical flow of all functions in the
expression. For humans and rule-based type checkers, the first step in solving
involves analyzing the higher-order function map. On the left, since the first input to map
is the function ord :: Char — Int, we can deduce that the parametric type variable a is
instantiated to Char and b is instantiated to Int. This process is often referred to as type
instantiation or specialization. The next step is to verify whether the third input to map matches
these deductions. As expected, this parameter is a string literal, which has the type [Char],
leading us to conclude that xs should have the type [Int]. The type inference for ys follows
a similar reasoning process.

Predicting a function’s type signature is an efficient and objective method for demonstrating
*

Both examples demonstrate the close relationship between type inference and understanding
a function’s logic. Testing a language model’s ability to infer types not only reflects its
understanding of the program but also its proficiency in logical reasoning. As the Curry-
Howard Isomorphism suggests, the expression bound to xs serves as proof that xs has
the type [Int]. This connection between function implementation and logical reasoning
highlights the importance and effectiveness of TF-Bench in providing a sound and fine-
grained evaluation of language models.

B Prompts

Act as a static analysis tool for type inference.
ONLY output the type signature.
Do Not Provide any additional commentaries or explanations.

System prompt.

Remember that in Haskell:

1. The list type "[a] is a polymorphic type, defined as “data [] a =[] | (:) a [a],
so (:) is a constructor for list type.
2. The String type is a list of characters, defined as “type String = [Char]’

for regular tasks
For polymorphic type variables, you can use type variables like “a”, "b", “c’, etc.
You should start with “a” and increment the alphabet as needed.

for pure tasks
For polymorphic type variables, you can use type variables like “t1°, “t2°, “t3°, etc.
You should start with “t1° and increment the number as needed.

Instruction prompt

Figure 5: Prompt used in TF-Bench.

17

C Post-processing

First, since the String type in Haskell is an alias for [Char], we replace occurrences of
[Char] with String in both the generated responses and the ground truth. Second, some
model outputs are enclosed in markdown code blocks, so we remove the top and bottom
markdown delimiters for consistency. Third, we observe that when a hook (for example,
xs :: as in the last line in [Appendix Figure 4) is provided in the prompt, some models
continue from the hook and generate only the type signature, while others repeat the hook
in their response. To standardize the outputs, we remove all instances of the hook from both
the ground truth and the model outputs. In general, we avoid complex post-processing and
focus on resolving basic formatting issues.

D Effects of the rewrite operators

In[Section 3.2} we introduce three different rewrite operators on different parts of the task:
NL types, type variables, and function names. We hypothesize that since type variables
do not contain NL elements, rewriting them should have much less performance impact
than NL types and function names. In this section, we analyze their effects on LLMs’
performance. To answer our research question, we individually rewrite TF-Bench with the
three rewrite operators. We run the three flagship general-purpose models GPT-4-turbo,
Claude-3.5-sonnet, and Ol-preview.

Models

80] I Ol-preview

[Claude-3.5-sonnet
[GPT-4-turbo

D
(=3

s

Accuracy (%)

[N}
(=4

None NL-Ty Ty-Var Binding Pure
Applied Rewrite Operator

Figure 6: Accuracy on TF-Bench with different rewrite operators. None: the original TF-
Bench. NL-Ty: rewriting NL types. Ty-Var: rewriting type variables. Binding: rewriting
binding names. Pure: TF-Benchpyre.

The results presented in|Figure 6|indicate that rewriting NL types has the most pronounced
effect on model performance, followed by rewriting binding names. In contrast, rewriting
type variables has a much smaller impact. This is likely because type variables are inherently
generic, and the evaluation considers whether the model’s response is alpha-equivalent
to the ground truth. Ideally, none of the three rewrite operators should affect the models’
performance, which would suggest that the models can effectively reason about programs
based on the task’s dependencies and the programs’ structural relationships.

E Bridging type inference to mathematical reasoning

While LLMs have achieved high scores on math question-answering (QA) benchmarks
78], suggests that their apparent success often stems from memorizing patterns in
training data rather than reasoning. To address this, task perturbation methods have been
developed for math benchmarks to evaluate the underlying reasoning processes.

GSM-Symbolic addresses this issue by creating symbolic templates from the GSM8K
dataset , where concrete nouns and numbers in the problems are replaced with variables,

18

requiring LLMs to respond with solutions expressed as combinations of these variables.
However, unlike programs, math question-answering tasks are constructed in natural lan-
guage, making it difficult to systematically determine which tokens can be substituted
without altering the problem’s semantics. Additionally, this approach may yield different
but semantically equivalent answers, complicating the evaluation of the model’s correctness
and limiting its applicability to other benchmark datasets. These challenges highlight the
complexities of designing rigorous evaluations for reasoning in tasks that involve inherent
ambiguity.

ReasonAgain [53]] adopts a similar approach but, instead of using symbolic variable templates,
generates Python programs from math problems using an LLM. The method involves
providing different inputs to the generated program, running it to obtain corresponding
outputs, and then let an LLM generate new tasks based on the program and the new input-
output pairs. While this approach offers the potential to extend to other benchmark datasets,
its reliability may be compromised due to the multiple steps that depend on the performance
of LLMs, introducing potential sources of error at each stage.

However, the reliance on math QA benchmarks on natural language descriptions makes it
challenging to systematically determine which tokens can be substituted without altering
the problem’s semantics, thereby complicating the verification of perturbation soundness.
These methods either cannot easily be applied to other benchmarks or rely on LLMs to
modify and generate new tasks, introducing additional risks of uncertainty. In contrast,
type inference leverages the benefits of verifiability and soundness from programming and
applies them to logical reasoning. Through the Curry-Howard Isomorphism [43, 44], also
known as propositions-as-types [45], type inference tasks align well with natural deduc-
tion [79]. This enables reliable perturbations that preserve semantic integrity and thus
provide a robust framework for evaluating LLMs’ mathematical reasoning capabilities. Our
findings in where fine-tuning LLMs on math corpus leads to higher performance
improvement on TF-Benchy,.e than on TF-Bench, also suggest potential opportunities for
future research to explore the mathematical reasoning capabilities of LLMs, aligning with
the Curry-Howard Isomorphism.

F Proving type equivalence in Haskell

F.1 Static analysis to define missing types

The first step in preparing the proof is to define all newly introduced types in TF-Benchpyre.
Because all NL types are rewritten in[Section 3.2} these types are not yet defined in Haskell.
Thus, we must define them before constructing the proof. To automate this process, we
designed a static analyzer that extracts all type names from the rewritten type signature. We
employ tree-sitter [66] to parse the signature into an AST and identify the signature
node. In Haskell, a signature node may contain two children: an optional context node and
a mandatory function node, corresponding to type-class constraints and the actual type
signature, respectively. We process these nodes separately.

Context node. Extracting type-class constraints is straightforward. The AST context node
contains a single level of children, each representing one constraint. We iterate over these
child nodes to collect the type names and construct a set of unique names. For each child, we
generate an empty type class of the form class <Name> a. Since these constraints always
apply to a single type variable, it suffices to define each class with a single parameter a.

Function node. The sub-AST of the function node in Haskell is a binary tree due to
currying. All the type names are located at the leaves of the binary tree. To extract them,
we perform a depth-first search traversal on the tree. If we reach a terminal node that is
a type constructor, we trace back to determine how many type arguments it takes. We
define new type constructors using data <Name> <vars ... >, where <vars ... > are the
type parameters determined by the arity (number of type arguments) of the constructor
. Otherwise, we define it as a simple empty type using data <Name> = <Name>. We

present a graphical illustration of the AST traversal in [Figure 7|and the analysis algorithm in
Algorithm 1

19

[function]
A

N2 Vv
[name] [function]
< A v
[apply] [function]
[- apply]L[; name H 5 tuple]1[name]
A A
[§ name” anriable ” . name H . name]

Figure 7: An example AST of f :: Int — Either a Char — (Int, Char) — Float.

[Figure 7]illustrates an example abstract syntax tree (AST) for the function signature f :: Int

— Either a Char — (Int, Char) — Float. Our static analyzer performs a depth-
first traversal from the root node to locate leaf nodes that correspond to type constructors.
As outlined in when the analyzer encounters a terminal node with type name
and field identifier constructor, it traces back along consecutive apply nodes to determine
the constructor’s arity. For instance, in the type constructor Either takes two
arguments, a and Char. If Either is rewritten as T1, we define it for the prover as data T1

tl t2. By contrast, if the terminal node is not a type constructor, we define it as a simple
empty type using data <Name> = <Name>.

Algorithm 1 Static analysis to collect type constructors with applied arity

1: global Constructors <— dict(name — multi-set of arities) > Key-value map
2: function TorAPPLY(n)
3: p < n.parent
4: return —(p # nil A p.type = “apply” A CHILD(p, “constructor”) = n)
5: function PEELAPPLYCHAIN(node)
6: arity < 0; cur < node
7: while cur.type = “apply” do
8: arity < arity + 1
9: next < CHILD(cur, “constructor”)
10: if next = nil then
11: break
12: cur < next
13: return (cur, arity) > cur is the constructor node

14: function Visit(n)
15: if n.type = “apply” A ToPAPPLY(n) then

16: (ctor, arity) <— PEELAPPLYCHAIN(n)

17: Constructors[SRc(ctor)].ADD(arity) > Src gets the source code
18: for all ¢ € n.named_children do

19: Visit(c)

F.2 Constructing proofs of type equivalence

{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ImpredicativeTypes #-}

module Check where
import Data.Type.Equality
-- Some predefined types synonyms to avoid name clashes

type Int_ = Int
type Bool_ = Bool

20

type Char_ = Char

type Float_ = Float
type Double_ = Double
data Natural = Natural

$new_types

type TRUTH $truth_vars = $truth_signature
type ANSWER $answer_vars = $answer_signature

proof :: TRUTH $truth_vars :~: ANSWER $truth_vars
proof = Refl

Listing 3: Proof for type equivalence

In Data.Type.Equality supplies GHC’s propositional type equality (:~:) with
its sole constructor Ref1, so that this proof type-checks iff TRUTH and ANSWER are definition-
ally equivalent, i.e., type equality coercions [67]. We use type operators to define symbolic
type constructors TRUTH and ANSWER for the ground truth and the model-generated type

signature, respectively. We use impredicative types [68| 69] to prove for polymorphisms
with bounded quantification. Parts in starting with $ are placeholders that are

filled in by our static analyzer described in

G Error analysis

Table 4: Error categories for type inference tasks and their definitions.

Error category Definition

OverGeneralization Chose a type that is too general—used broader polymor-
phism (e.g., independent input/output type variables) where
the most general correct signature requires them to coincide.

UnderGeneralization Added an unnecessary or stronger type-class constraint not
justified by the implementation, making the signature more
specific than the truly general one.

ArgOrderMismatch Selected the right type variables but arranged them in the
wrong parameter order; the arguments are permuted relative
to the implementation.

ArityMismatch Provided a type with an incorrect number of arguments,
supplying too many or too few relative to the implementation.

ConstraintError Attached incorrect type-class constraints that do not match
the implementation’s requirements; the wrong constraints
were applied to the variables.

SyntaxError Produced an answer that is not a valid Haskell type signature.

InstructionFollowing Failed to follow the instructions given in the prompt.

ResponseError Supplied no answer or an answer entirely unrelated to the
task.

We implemented an LLM-based analyzer to characterize the types of errors produced by the
models. We first conducted a manual analysis of the outputs and reasoning summaries from
all results generated by Claude-opus-4-1, and grouped its errors into eight categories. These
categories and their definitions are summarized in[Table 4] The first five categories concern
reasoning about program semantics. The sixth category, SyntaxError, captures outputs that
are Haskell code but syntactically invalid. The final two categories, InstructionFollowing
and ResponseError, concern the model’s ability to follow instructions and produce relevant
responses. InstructionFollowing denotes cases where the model fails to follow the prompt,

21

which asks for only the type signature with no additional text. ResponseError covers timeouts
or failures to return any answer.

claude-opus-4-1-20250805 claude-sonnet-4-20250514 gpt-5-2025-08-07 gpt-5-mini-2025-08-07 gpt-5-nano-2025-08-07

‘

PURE

BASE

15.0%

‘

mmm OverGeneralization EEE ArgOrderMismatch B ConstraintError = InstructionFollowing
N UnderGeneralization ArityMismatch [SyntaxError ResponseError
gpt-0ss:120b gpt-0ss:20b qwen3:235b qwen3:30b qwen3:32b
w
2
[2]
w
o
>
o
s
» ‘

B OverGeneralization HE ArgOrderMismatch I ConstraintError [InstructionFollowing
mmm UnderGeneralization ArityMismatch = SyntaxError ResponseError

Figure 8: Error analysis of the recent models on TF-Bench.

We then useas instructions to prompt GPT-5-mini to analyze the remaining models.
In total, we evaluate ten state-of-the-art reasoning models, five proprietary API-access
models and five open-access models. The results appear in[Figure 8 We observe that models
within the same family tend to make similar types of errors. In particular, the Claude, GPT,
and Qwen families exhibit notably different error profiles. Both the proprietary GPT models
(gpt-5 series) and the open-access GPT models (gpt-oss series) show similar error patterns.
The analysis also reveals architectural effects. For example, qwen3:235b and qwen3:30b are
MoE models, whereas qwen3:32b is a dense model. Although they share the same training
corpus and released at the same time, the MoE models’ error distributions differ markedly
from the dense model’s. We believe this error analysis offers useful insights for future model
development, and analysis of reasoning abilities lead by different training strategies and
model architectures.

H Additional figures

words :: String — [String]
words s = case dropwhile isSpace s of
nn % []

s' = w : words s''
where (w, s'') = break isSpace s'

Listing (4) Monomorphic function

map :x (a = b) - [a] = [b]
map f [] = []
map f (x:xs) = f x : map f xs

Listing (5) Parametric polymorphic
(=) :: Ega = a > a > Bool
x =y =not (x & y)

Listing (6) Ad-hoc polymorphism

Figure 9: Example function definitions taken from Haskell Standard Prelude [16].

23

60

50

Accpurc (%)
w =
o S

[\
o

10

AP HOXFE+-OVACAOHEO

L 4
4
v
.I.4
v + Vv
al A
[J
AVe
>
< \ A /
% A < i‘
|
% + e
[J
S * e 4
00 10 20 30 40 50 60 70 80 90
Acc (%)
Phi-3:3.8B P Llama3:70B % QwQ:32B V Qwen2.5-Coder:32B
Phi-3:14B @ Lama31sB @® Macro-01:7B <« Mathstral:7B
Mistral:7B % Llama3.1:70B [l Athene-V2:72B Qwen2-Math:7B
Mistral:22B = Llama3.1:405B A CodeGemma:7B Qwen2-Math:72B
Mixtral:8x7B ® Llama3.2:1B V CodeGeeX4:9B Claude-3-haiku
Mixtral:8x22B ® Llama3.2:3B Codestral:22B Claude-3-sonnet
WizardLM-2:7B M Llama3.3:70B Granite-Code:3B Claude-3-opus
WizardLM-2:8x22B A Qwen2:7B Granite-Code:8B Claude-3.5-sonnet
Gemma:7B V Qwen2:72B Granite-Code:20B B GPT-3.5-turbo
Gemma2:9B <4 Qwen2.5:15B Granite-Code:34B A GPT-4o0-mini
Gemma2:27B P Qwen2.5:3B DeepSeek-Coder-V2:16B V GPT-4-turbo
DeepSeek-V2:16B ©® Quen257B @ DeepSeek-Coder-V2:236B <« GPT-40
DeepSeek-V2:236B * Qwen2.5:32B B Qwen2.5-Coder:1.5B P Ol-mini
DeepSeek-V2.5:236B &= Qwen2.5:72B A Qwen2.5-Coder:7B ‘ O1-preview
Llama3:8B

Figure 10: Robustness analysis of models on TF-Bench and TF-Benchyyre.

24

Accuracy (%)

T
_] Poly Type
B Ad-hoc
[Parametric
O Monomorphic

Accuracy (%)

<) o S X o X >
O » & & > & RS
S & N & R & >
W & W & & o o°
X X7 / . 4
ol & X
éoQ @ be: (\”b\} ,be \@0
S & S
NS
9
Models
(a) TF-Bench
T
Poly Type
W Ad-hoc
[Parametric
O Monomorphic
o o Q X o X O
)&(0 \fb‘ ,@\Q é\z 0Q° é\z \Q{‘f
& » & o £ o
§ § > & % ¥
@ & 5 P \)b \7,\3
N N [9)
& ©
9
Models

(b) TE-Benchpure
Figure 11: Accuracy by category for TF-Bench and TF-Benchyyye.

25

I Additional evaluation results

This section presents supplementary evaluation results for models that are not central to our
research questions and were omitted from the main text due to space constraints. We also
report results for several models released after submission that may be of interest to readers.

I.1 API-access models

We also provide additional evaluation results of older API-access models on TF-Bench, as a

complementary to[Table 1| The results are shown in[Table 5

Table 5: Additional evaluation results of API-access models
on TF-Bench. The models are separated by whether they
are too old before our paper is submitted for review (top)
or newly released after that (bottom).

Model Version TTC Acc (%) Accpure(%)
Claude-3-haiku 2024-03-07 X 69.15 26.60
Claude-3-sonnet 2024-02-29 X 74.29 20.92
GPT-3.5-turbo 0125 X 71.99 27.13
GPT-40-mini 2024-07-18 X 82.09 25.89
GPT-O1-mini 2024-09-12 v 87.23 41.49
GPT-Ol-preview 2024-09-12 v 86.17 53.72
GPT-5 2025-08-07 v 83.34 51.95
GPT-5-mini 2025-08-07 v 83.34 47.52
GPT-5-nano 2025-08-07 v 82.62 41.13
Claude-4.1-opus™ 2025-05-14 v 83.16 39.71
Claude-4-sonnet™ 2025-05-14 v 89.72 53.01

*: We experienced the performance issue of Claude 4 mod-
els [80].

One notable observation in [Table 5 concerns the three versions of GPT-5. Since these models
are proprietary, detailed information about their architectural differences is unavailable. We
therefore infer that the mini and nano variants are smaller models distilled from the full
GPT-5, likely through strong-to-weak distillation [81] or similar techniques. Interestingly,
while the mini and nano models achieve performance comparable to the full GPT-5 on the
base split of TF-Bench, they perform substantially worse on TF-Bench,yre. This pattern
suggests that smaller distilled models may capture only superficial knowledge from the
teacher model, failing to acquire essential reasoning abilities. Exploring this limitation is a
promising direction for future work.

I.2 Open-access models

We run all the open-access models using Ollama [71]]. All the experiments are conducted
with a server running Ubuntu 24.04, equipped with 8 NVIDIA H100 GPUs (80GB), and
1.5TB of RAM. The results are shown in%

26

Table 6: Full evaluation results of popular open-source LLMs on TF-Bench.
*: The model runs very slowly, we set the timeout of each task to five minutes.

LLM Type Model Size TIC Acc (%) Accpure(%)
. 388 X 2872 372
Phi-3 [82] 4B X 4521 1426
. 7B X 4521 7.99
Mistral [83] 2B X 6117 14.89
. 8x7B X 4043 2.66
Mixtral [84] 8x22B X 69.68 19.68
. 7B X 5585 7.45
WizardLM-2 [85 8x22B X 75.00 26.60
Gemma [3] 7B X 4894 7.45
9B X 5319 13.30
Gemma2 [86] B X 6649 1277
0ss
6B X 2979 7.98
DeepSeek-V2 [87] 236B X 3830 1117
DeepSeek-V2.5 [87] 236B X 7660 32.45
8B X 4894 12.77
Llama3 [88] 70B X 64.36 28.19
8B X 5479 11.17
Llama3.1 [89] 70B X 6649 21.81
405B X 7979 31.38
1B 372 1.06
Llama3.2 [90] 3B § 9.04 266
Llama3.3 [01] 708 x 7021 26.60
7B X 4043 3.19
Qwen?2 [92] 2B X 6383 21.81
158 X 3032 6.91
3B X 1543 1.60
Qwen2.5 [92] 7B X 6596 21.28
2B X 7447 36.17
7B X 8191 37.77
QwQ [93] 2B v 2394 11.70*
Marco-ol [94] 7B v 60.64 23.40
Athene-V?2 [95] 7B X 8245 37.77
CodeGemma [96] 7B X 53.19 12.23
CodeGeeX4 [97] 9B X 5585 14.89
Codestral [98] 2B X 6330 11.17
3B X 2074 10.64
Code . 8B X 3298 10.11
Granite-Code [21] 208 X 4148 8.51
4B X 6436 24.47
DeepSeek-Coder-V2 [99] 213661?3 ; gggé :1,,238
158 X 3670 9.04
Qwen?2.5-Coder [70] 7B X 61.17 21.28
2B X 8245 31.91
Mathstral [100] 7B X 4734 15.43
Math
7B 43.09 10.64
Qwen2-Math [101] 72B ; 71.28 33.51

27

J Limitations and Future Work

J.1 Analysis of fine-tuning

In|Section 4.6, our model selection of the base models of Qwen2-Math and Qwen2.5-Coder
is not an exact pair, where Qwen2-Math is fine-tuned from Qwen?2, while Qwen2.5-Coder is
fine-tuned from Qwen2.5. This limitation is due to Qwen2-Coder and Qwen2.5-Math not
being available on Ollama. Although the base models are not exactly the same, they share
the same architecture. Qwen2.5 was trained on a larger dataset than Qwen2 [70], which does
not conflict with our observations from our experiments.

For this analysis, we only focus on Qwen2 and Mistral since they are the only models
providing both code and math versions. While our observations may not generalize to all
models, as we cannot evaluate every model fine-tuned on both code and math datasets, it
highlights a notable trend in post-tuning to enhance models’ reasoning capabilities.

J.2 Downstream application

TF-Bench and its variants are designed to evaluate LLMs’ foundational reasoning about
program semantics. These benchmarks are not intended to determine the applicability of
LLMs in specific downstream engineering tasks, but to provide a systematic and principled
evaluation methodology of their intelligence level on programming. Our evaluations aim
to offer guidance and confidence when choosing to use LLM-powered tools for essential
software tasks.

Deductive reasoning has not been well studied in existing literature on LLMs for PLs, yet
it is a crucial aspect of intelligence, particularly within formalist philosophy. We believe
that evaluating deductive reasoning is essential for understanding the true capabilities of
LLMs, especially given the current trend of models utilizing increased test-time compute
(TTC). Previous work on evaluation benchmarks has primarily focused on inductive tasks,
like few-shot code generation or code completion, aligning with the next-token prediction
generation paradigm of LLMs. However, the modern trend toward TTC involves training
models to reason step by step in a deductive manner similar to humans, yet no current
PL benchmarks adequately evaluate this critical dimension. Consequently, we argue that
TF-Bench is necessary to advance LLM development by specifically addressing and assessing
their deductive reasoning capabilities.

J.3 Future work

While our main focus is evaluating the fundamental deductive reasoning capabilities of
LLMs, there are significant real-world applications for type inference within TF-Bench. In
PLs that feature static and strong typing, traditional rule-based type inference methods face
two primary limitations that LLMs can address: undecidability and poor extensibility.

Some type inference and type checking algorithms are undecidable when relying solely
on static analysis, particularly in languages that incorporate flexible generics such as struc-
tural subtyping or bounded quantification [102]. Existing research has explored various
approaches to mitigate these limitations [103]. In these scenarios, LLM-based type inference
tools can be particularly beneficial by providing probabilistic type inference results.

Furthermore, applying new rule-based typing tools to existing programming languages
remains challenging. Most research in PL tends to create new toy languages to experiment
with innovative type system features, rather than extending existing languages. Only a few
languages support language-level extensions, and even in those cases, introducing new type
system features demands significant effort.

28

	Introduction
	Background and Related Work
	Learning to understand programs
	Propositions as types
	Task perturbation to evaluate reasoning robustness

	Design of TF-Bench
	Benchmark construction
	Removing natural language from tasks
	Model input
	Evaluation methodology

	Experiments
	Experimental setup
	Research questions
	Which are the best performers on TF-Bench?
	Semantics robustness
	Reasoning effectiveness
	Impacts of fine-tuning

	Conclusion
	Appendix
	 Appendix
	Motivating example
	Prompts
	Post-processing
	Effects of the rewrite operators
	Bridging type inference to mathematical reasoning
	Proving type equivalence in Haskell
	Static analysis to define missing types
	Constructing proofs of type equivalence

	Error analysis
	Additional figures
	Additional evaluation results
	API-access models
	Open-access models

	Limitations and Future Work
	Analysis of fine-tuning
	Downstream application
	Future work

