
Evaluating Program Semantics Reasoning 

with Type Inference in System F

Introduction

Test-test compute (TTC) empowers coding LLMs the ability

to reason on programs. However, are LLMs really

“reasoning” on the semantics (logic) of the code?

• The evaluation gap for reasoning LLMs

o Math: competition and answering problems

o Code: Coding and patch

• How about reasoning about the logic behind math & code?

o program-centric deductive system

Benchmark evaluation

TF-Bench: benchmark construction

We use the Haskell Prelude to construct TF-Bench

• Formal deductive type system: System F (and System F<).

• The type signature is concise and is decoupled from the 

function body.

• Type equivalence is formally verifiable (w/ signature only).

• Haskell is the most popular language that meets these 

above conditions

Yifeng He, Luning Yang, Chris Gaw Gonzalo, Hao Chen

Background: propositions as types

• Types in programming ≅ propositions in logic

• Type inference is natural deduction

• Type inference results are formally verifiable

o Mutate the tasks, prove the results!

⟹ type inference is a task for program semantics reasoning

Pipeline to construct TF-Bench.

Pipeline to evaluate LLMs on TF-Bench.

Alpha-rewrite: removing natural language from tasks

We design three alpha-rewrite operators to transform the tasks:

Implementation details:

• Operators are communitive and associative under composition

• Transformed tasks are alpha-equivalent to the original tasks.

TF-Benchpure = Alpha-rewrite(TF-Bench) reveals the true program

semantics reasoning performance, w/o contamination & relying on NL-cues

1. Add definitions for new types after alpha-rewrite.

2. Prompt the LLMs with tasks to generated a type signature.

3. Construct a proof using ground-truth and generated type signatures.

4. If the proof compiles, the two signatures are equivalent.

5. Otherwise, we analyze what the error is.

Results

My homepage Paper Code

Findings

1. Reasoning robustness⟹ LLMs (still!) can’t reason on program semantics.

2. Reasoning effectiveness ⟹ not all reinforcement learning are effective

3. Fine-tuning on math data helps reasoning on code!


	Slide 1

