
Evaluating Program Semantics Reasoning 

with Type Inference in System F

Introduction

Test-test compute (TTC) empowers coding LLMs the ability

to reason on programs. However, are LLMs really

“reasoning” on the semantics (logic) of the code?

• The evaluation gap for reasoning LLMs

o Math: competition and answering problems

o Code: Coding and patch

• How about reasoning about the logic behind math & code?

o program-centric deductive system

Benchmark evaluation

TF-Bench: benchmark construction

We use the Haskell Prelude to construct TF-Bench

• Formal deductive type system: System F (and System F<).

• The type signature is concise and is decoupled from the 

function body.

• Type equivalence is formally verifiable (w/ signature only).

• Haskell is the most popular language that meets these 

above conditions
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Background: propositions as types

• Types in programming ≅ propositions in logic

• Type inference is natural deduction

• Type inference results are formally verifiable

o Mutate the tasks, prove the results!

⟹ type inference is a task for program semantics reasoning

Pipeline to construct TF-Bench.

Pipeline to evaluate LLMs on TF-Bench.

Alpha-rewrite: removing natural language from tasks

We design three alpha-rewrite operators to transform the tasks:

Implementation details:

• Operators are communitive and associative under composition

• Transformed tasks are alpha-equivalent to the original tasks.

TF-Benchpure = Alpha-rewrite(TF-Bench) reveals the true program

semantics reasoning performance, w/o contamination & relying on NL-cues

1. Add definitions for new types after alpha-rewrite.

2. Prompt the LLMs with tasks to generated a type signature.

3. Construct a proof using ground-truth and generated type signatures.

4. If the proof compiles, the two signatures are equivalent.

5. Otherwise, we analyze what the error is.

Results
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Findings

1. Reasoning robustness⟹ LLMs (still!) can’t reason on program semantics.

2. Reasoning effectiveness ⟹ not all reinforcement learning are effective

3. Fine-tuning on math data helps reasoning on code!
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