
Evaluating Program Semantics Reasoning with Type
Inference in System F

Yifeng He1, Luning Yang2, Chris Gonzalo1, Hao Chen1

1University of California, Davis; 2University of Hong Kong



Background

Design of TF-Bench

Experimental results

References

Backup slides



Test-time compute: let’s think step by step

• Chain-of-Thought prompting [Wei+22] enables reasoning in LLMs.
• CoT decomposes multi-step problems into intermediate (reasoning) steps.
• CoT becomes a training paradigm [Ope24; Dee+25; Mue+25].

How many r in raspberry?

Let's break down the process of counting the letter 'r' in the 
word "raspberry" ...

* First letter: 'r' - This is an 'r', count = 1.

* Second letter: 'a' - Not an 'r', count remains 1 ...

* Sixth letter: 'e' - Not an 'r', count remains 1.

* Seventh letter: 'r' - This is an 'r', count = 2.

* Eighth letter: 'y' - Not an 'r', count remains 2 ...

The number of 'r's in "raspberry" is 2.


, let's re-read the question carefully. It asks "How many r 
in raspberry?" ... * r - a - s - p - b - e - r - r - y ... * First 'r' ... * 
Second 'r' ... * Third 'r' ... Count = 3 ...

Wait

My initial answer of 2 was incorrect due to a quick reading of 
the word. Final Answer: The final answer is

Question

Reasoning trace

Response


Figure 1: TTC example [Mue+25].

• Pre-trained knowledge: rules
• In-context knowledge + prompt:

assumptions/hypotheses
• CoT: reasoning

– step 1: lemma 1
– step 2: lemma 2
– · · ·

• Response: a proposition



The evaluation gap
Reasoning LLMs are evaluated on math and coding:
• Mathematical reasoning

– AIME 2024: high school math competition
– MATH-500: math problem solving

• Code generation
– LiveCodeBench [Jai+25]: LeetCode, online coding contests
– SWE-Bench [Jim+24]: patch generation

What is missing in the idea of reasoning for code?
• program-centric deductive system
• =⇒ reason about structural logic behind programs



Propositions as types

• Types in programming ∼= propositions in logic [Wad15].
• A function type A→ B ∼= the proposition A =⇒ B [Cur34].
• Type inference is natural deduction.

1 not :: Bool -> Bool
2 (.) :: (b -> c) -> (a -> b) -> a -> c
3 span :: (a -> Bool) -> [a] -> ([a], [a])
4
5 break p = span (not . p)
6 -- complete the following type signature

for `break`

7 break :: (a -> Bool) -> [a] -> ([a],[a])

Listing 1: Example task for the break
function

Figure 2: Claude 3.7’ extended thinking
mode on the task in Listing 1, Ø.



But wait, are LLMs really reasoning about
program semantics?
Input transformations lead to a significant performance drop:
• Semantic-preserving code transformations [AD22; Yan+22; Liu+23].
• Perturbations on math problems [Mir+24; Jia+24; Gul+24].

1 f2 :: (t1 -> T1) -> [t1] -> ([t1], [t1])
2 f3 :: T1 -> T1
3 f4 :: (t1 -> t2) -> (t3 -> t1) -> t3->t2
4
5 f1 p = f2 (f3 `f4` p)
6 -- complete the following type signature

for `f1`

7 f1 :: (t1 -> T1) -> [t1] -> ([t1], [t1])

Listing 2: The task in 1 after alpha-rewrite Figure 3: Claude 3.7’ extended thinking
mode on the task in Listing 2, Ø.



Background

Design of TF-Bench

Experimental results

References

Backup slides



Benchmark construction
We use the Haskell Prelude [Jon03] for the following reasons:
1. A formal deductive type system: System F (and System F< 1).
2. The type signature is concise and is decoupled from the function body.
3. Type equivalence is formally verifiable (w/ signature only).
4. Haskell is the most popular language that meets these conditions.

1 map :: (a -> b) -> [a] -> [b]
2 map f [] = []
3 map f (x:xs) = f x : map f xs

Listing 3: Parametric polymorphic

1 (==) :: Eq a => a -> a -> Bool
2 x == y = not (x /= y)

Listing 4: Ad-hoc polymorphism

1for bounded quantification



Removing natural language from tasks
We design three alpha-rewrite operators to remove NL from the tasks:
• NL-Type: Int, Char, Bool, Eq, Ord . . .→ T1, T2, T3, T4, T5 . . .

• Type-Var: a, b, c, d, e . . .→ t1, t2, t3, t4, t5 . . .

• Binding: map, not, foldl, (+) . . .→ f1, f2, f3, f4 . . .

Implementation details:
• Operators have type Task -> Either Task Error.
• Operators are commutative and associative under composition [Kle65].
• Transformed tasks are alpha-equivalent to the original tasks.



Construction pipeline and statistics

Figure 4: Pipeline to construct TF-Bench.

In total, TF-Bench has 188 tasks,
• 26.6% are monomorphic functions,
• 32.4% are parametric polymorphisms,
• and 41.0% are ad-hoc polymorphisms.
TF-Benchpure is the NL-free version of TF-Bench.



Evaluation methodology

Figure 5: Pipeline to evaluate LLMs on TF-Bench.

1. We use the ground-truth signature to add definitions for new types.
2. We prompt the LLMs with tasks to generated a type signature.
3. We construct a proof using the ground-truth and generated signatures.
4. If the proof compiles, the two signatures are equivalent.
5. Otherwise we analyze what the error is.



Background

Design of TF-Bench

Experimental results

References

Backup slides



Research questions
We ask the following questions around program semantics reasoning:
1. What is the performance gap of LLMs on TF-Bench and TF-Benchpure?
2. How effective is TTC of models after reinforcement learning?
3. Can fine-tuning on math/code improve reasoning?



RQ1. The performance gap

Model Version TTC Acc Accpure RS

Claude-3.5-sonnet 2024-06-20 7 85.46 48.97 57.3
Claude-3.7-sonnet 2025-02-19 3 90.42 55.85 61.77

GPT-O3-mini 2025-01-31 3 90.43 48.40 53.52
GPT-O3 2025-04-16 3 81.91 52.66 64.29

DeepSeek-V3 2025-03-25 7 83.51 43.62 52.23
DeepSeek-R1 2025-01-20 3 86.70 44.15 50.92

Qwen3
30B-A3B 3 81.38 40.43 49.68

32B 3 87.94 43.09 49.00
235B-A22B-FP8 3 85.11 44.15 51.87

Table 1: Main evaluation results. RS(m) = Accpure(m)/Acc(m).



RQ2. The effectiveness of TTC

Model TTC Acc Accpure RE

Qwen3-235B-FP8
7 80.49 35.64

1.37
3 86.70 44.15

Claude-3.7-sonnet
7 87.77 46.81

3.41
3 90.42 55.85

Gemini-2.5-flash
7 78.19 30.32

3.90
3 83.51 51.06

Table 2: Reasoning effectiveness of top LLMs.

RE(mttc,m) =
Accpure(mttc)−Accpure(m)

Acc(mttc)−Acc(m)
=
∆pure

∆
.



RQ3: Fine-tuning on math/code I

FT Corpus Base Model (FT Model) Size Acc FT Acc ∆ Accpure FT Accpure ∆pure

Code

Gemma (CodeGemma) 7B 48.94 53.19 + 4.25 7.45 12.23 + 4.78

DeepSeek-V2 (-Coder)
16B 29.79 55.32 + 25.53 7.98 15.96 + 7.98
236B 38.30 80.85 + 42.55 11.17 36.70 + 25.53

Mistral (Codestral) 22B 61.17 63.30 + 2.13 19.68 11.17 - 8.51

Qwen2.5 (-Coder)
1.5B 30.32 36.70 + 6.38 6.91 9.04 + 2.13
7B 65.96 61.17 - 4.79 21.28 21.28 0.00
32B 74.47 82.45 + 7.98 36.17 31.91 - 4.26

Math

Mistral (Mathstral) 7B 45.21 47.34 + 2.13 7.99 15.43 + 7.44

Qwen2 (-Math)
7B 40.43 43.09 + 2.66 3.19 10.64 + 7.45
72B 63.83 71.28 + 7.45 21.81 33.51 + 11.7

Table 3: Result comparison of fine-tuning. FT Corpus: the corresponding fine-tuning
corpus. ∆,∆pure: absolute increase in accuracy after fine-tuning.



RQ3: Fine-tuning on math/code II
• fine-tuning on code sometimes leads to a - decline in performance,
• fine-tuning on math consistently results in performance + gains,
• fine-tuning on code exhibit smaller or negative improvements on

TF-Benchpure, i.e. RE< 0,
• the same models fine-tuned on math demonstrate greater improvements

on TF-Benchpure, i.e. η > 1, although not as significant as TTC.

Observation: Fine-tuning on math might enhance the models’ reasoning
ability, which also translates effectively tasks related to code.



Background

Design of TF-Bench

Experimental results

References

Backup slides



[Wei+22] Jason Wei et al. “Chain of Thought Prompting Elicits Reasoning in
Large Language Models”. In: Advances in Neural Information
Processing Systems. 2022. url:
https://openreview.net/forum?id=_VjQlMeSB_J.

[Ope24] OpenAI. OpenAI o1 System Card. 2024. url:
https://cdn.openai.com/o1-system-card.pdf.

[Dee+25] DeepSeek-AI et al. DeepSeek-R1: Incentivizing Reasoning Capability in
LLMs via Reinforcement Learning. 2025. arXiv: 2501.12948 [cs.CL].
url: https://arxiv.org/abs/2501.12948.

[Mue+25] Niklas Muennighoff et al. “s1: Simple test-time scaling”. In: arXiv
preprint arXiv:2501.19393 (2025).

[Jai+25] Naman Jain et al. “LiveCodeBench: Holistic and Contamination Free
Evaluation of Large Language Models for Code”. In: The Thirteenth
International Conference on Learning Representations. 2025. url:
https://openreview.net/forum?id=chfJJYC3iL.

https://openreview.net/forum?id=_VjQlMeSB_J
https://cdn.openai.com/o1-system-card.pdf
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=chfJJYC3iL


[Jim+24] Carlos E Jimenez et al. “SWE-bench: Can Language Models Resolve
Real-world Github Issues?” In: The Twelfth International Conference
on Learning Representations. 2024. url:
https://openreview.net/forum?id=VTF8yNQM66.

[Wad15] Philip Wadler. “Propositions as types”. In: Commun. ACM 58.12 (Nov.
2015), pp. 75–84. issn: 0001-0782. doi: 10.1145/2699407. url:
https://doi.org/10.1145/2699407.

[Cur34] H. B. Curry. “Functionality in Combinatory Logic”. In: Proceedings of
the National Academy of Sciences 20.11 (1934), pp. 584–590. doi:
10.1073/pnas.20.11.584. eprint:
https://www.pnas.org/doi/pdf/10.1073/pnas.20.11.584.
url:
https://www.pnas.org/doi/abs/10.1073/pnas.20.11.584.

[AD22] Toufique Ahmed and Premkumar Devanbu. “Multilingual training for
software engineering”. In: Proceedings of the 44th International
Conference on Software Engineering. ICSE ’22. ACM, May 2022. doi:
10.1145/3510003.3510049. url:
http://dx.doi.org/10.1145/3510003.3510049.

https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.1145/2699407
https://doi.org/10.1145/2699407
https://doi.org/10.1073/pnas.20.11.584
https://www.pnas.org/doi/pdf/10.1073/pnas.20.11.584
https://www.pnas.org/doi/abs/10.1073/pnas.20.11.584
https://doi.org/10.1145/3510003.3510049
http://dx.doi.org/10.1145/3510003.3510049


[Yan+22] Zhou Yang, Jieke Shi, Junda He, and David Lo. “Natural attack for
pre-trained models of code”. In: Proceedings of the 44th International
Conference on Software Engineering. ICSE ’22. Pittsburgh,
Pennsylvania: Association for Computing Machinery, 2022,
pp. 1482–1493. isbn: 9781450392211. doi:
10.1145/3510003.3510146. url:
https://doi.org/10.1145/3510003.3510146.

[Liu+23] Shangqing Liu, Bozhi Wu, Xiaofei Xie, Guozhu Meng, and Yang Liu.
“Contrabert: Enhancing code pre-trained models via contrastive
learning”. In: 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE). IEEE. 2023, pp. 2476–2487.

[Mir+24] Iman Mirzadeh et al. GSM-Symbolic: Understanding the Limitations of
Mathematical Reasoning in Large Language Models. 2024. arXiv:
2410.05229 [cs.LG]. url:
https://arxiv.org/abs/2410.05229.

https://doi.org/10.1145/3510003.3510146
https://doi.org/10.1145/3510003.3510146
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229


[Jia+24] Bowen Jiang et al. “A Peek into Token Bias: Large Language Models
Are Not Yet Genuine Reasoners”. In: Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing.
Miami, Florida, USA: Association for Computational Linguistics, Nov.
2024, pp. 4722–4756. doi: 10.18653/v1/2024.emnlp-main.272.
url: https://aclanthology.org/2024.emnlp-main.272/.

[Gul+24] Aryan Gulati et al. “Putnam-AXIOM: A Functional and Static
Benchmark for Measuring Higher Level Mathematical Reasoning”. In:
The 4th Workshop on Mathematical Reasoning and AI at NeurIPS’24.
2024. url: https://openreview.net/forum?id=YXnwlZe0yf.

[Jon03] Simon Peyton Jones. Haskell 98 language and libraries: the revised
report. Cambridge University Press, 2003.

[Kle65] H. Kleisli. “Proc. Amer. Math. Soc. 16 (1965), 544-546”. In:
Proceedings of the American Mathematical Society 16 (1965),
pp. 544–546. issn: 0002-9939. doi:
10.1090/S0002-9939-1965-0177024-4.

https://doi.org/10.18653/v1/2024.emnlp-main.272
https://aclanthology.org/2024.emnlp-main.272/
https://openreview.net/forum?id=YXnwlZe0yf
https://doi.org/10.1090/S0002-9939-1965-0177024-4


Background

Design of TF-Bench

Experimental results

References

Backup slides



Formal reasoning in deductive systems

Definition
A deductive system (or inference system) is specified by 2

• a collection of judgments/assertions/validations,
• a collection of steps (inference rules) that move from validation to

validation, and finally to the proposition.
Natural deduction is a deductive system that reason from assumptions.

2This is not a completely standard definition, but is an illustrative description.



Effects of different rewrite operators

None NL-Ty Ty-Var Binding Pure
Applied Rewrite Operator

0

20

40

60

80

A
cc

ur
ac

y
(%

)
Models

O1-preview

Claude-3.5-sonnet

GPT-4-turbo

Figure 6: Accuracy on TF-Bench with different rewrite operators. None: the original
TF-Bench. NL-Ty: rewriting NL types. Ty-Var: rewriting type variables. Binding:
rewriting binding names. Pure: TF-Benchpure.


	Background
	Design of TF-Bench
	Experimental results
	References
	References
	Backup slides

