Evaluating Program Semantics Reasoning with Type
Inference in System F

Yifeng He!, Luning Yang?, Chris Gonzalo!, Hao Chen?

MUniversity of California, Davis; University of Hong Kong

..‘?.‘..4;.\.41_
}.. NEURAL INFORMATION
‘;?. , PROCESSING SYSTEMS
[J

COMPUTER SCIENCE

Background

COMPUTER SCIENCE

Test-time compute: let’s think step by step

* Chain-of-Thought prompting [Wei+22] enables reasoning in LLMs.
* CoT decomposes multi-step problems into intermediate (reasoning) steps.

* CoT becomes a training paradigm [Ope24; Dee+25; Mue+25].

(How many r in raspberry? Question) ° Pre-trail’led knOWIedge . I‘uleS

“Let's break down the process of counting the letter 'r" in the\l
word "raspberry” ...

, . In-context knowledge + prompt:
* First letter: 'r' - Thisis an 'r', count = 1. » K
* Second letter: 'a' - Not an 'r', count remains 1 ... aSSUHlptIOI'lS/hypOtheseS

* Sixth letter: ‘e’ - Not an 'r', count remains 1.
CoT: reasoning

* Seventh letter: 'r' - This is an 'r', count = 2.
* Eighth letter: 'y’ - Not an 'r', count remains 2 ...
The number of 'r's in "raspberry" is 2.

Wait, let's re-read the question carefully. It asks "How many r .
in raspberry?" ..,*rra—s'prb—e—r—{—y.,.*Firsl'r'... e — step 1: lemma 1
\Second 'r' ... *Third r' ... Count =3 ... Reasoning trace/, _ Step 2: 1emma 2
’/My initial answer of 2 was incorrect due to a quick reading of\‘ ’
‘«\El?e word. Final Answer: The final answer is@ Response / -
Figure 1: TTC example [Mue+25]. * Response: a proposition

COMPUTER SCIENCE

The evaluation gap

Reasoning LLMs are evaluated on math and coding:
e Mathematical reasoning

— AIME 2024: high school math competition
— MATH-500: math problem solving

* Code generation

— LiveCodeBench [Jai+25]: LeetCode, online coding contests
— SWE-Bench [Jim+24]: patch generation

What is missing in the idea of reasoning for code?
* program-centric deductive system

e — reason about structural logic behind programs

COMPUTER SCIENCE

Propositions as types

* Types in programming = propositions in logic [Wad15].

* A function type A — B = the proposition A = B [Cur34].

* Type inference is natural deduction.

not :: Bool -> Bool
() :: (b =>¢) -> (a =>b) ->a->c
span :: (a -> Bool) -> [a]l -> ([al, [al)

break p = span (not . p)
-- complete the following type signature
for “break’

oS RN

7 |break :: (a -> Bool) -> [a] -> ([al,[al)
L

Listing 1: Example task for the break
function

‘will have the same return type as

Figure 2: Claude 3.7’ extended thinking
mode on the task in Listing 1, V.

COMPUTER SCIENCE

But wait, are LLMs really reasoning about
program semantics?

Input transformations lead to a significant performance drop:
* Semantic-preserving code transformations [AD22; Yan+22; Liu+23].

e Perturbations on math problems [Mir+24; Jia+24; Gul+24].

1 £2 :: (t1 -> T1) -> [t1] -> ([t1], [t1])
2 | £3 :: T1 -> T1 This means 3 in the context of 74 s
3 f4 :: (t1 -> t2) -> (3 -> tl1) -> t3->t2 £
4 or equivalently
5 | f1 p = £2 (£3 “f4" p)
6 -- complete the following type signature
for “f1°
7 [£t s (81 > T -> [81] -> ([x1], [t1]) |

L |

Listing 2: The task in 1 after alpha-rewrite

Figure 3: Claude 3.7’ extended thinking
mode on the task in Listing 2, V.

COMPUTER SCIENCE

Design of TF-Bench

COMPUTER SCIENCE

Benchmark construction

We use the Haskell Prelude [Jono3] for the following reasons:
. A formal deductive type system: System F (and System F_ ').
. The type signature is concise and is decoupled from the function body.

. Type equivalence is formally verifiable (w/ signature only).

A W N R

. Haskell is the most popular language that meets these conditions.

map :: (a -> b) -> [a]l -> [b]
map £ [] = []
map f (x:xs) = f x : map f xs

w N R

Listing 3: Parametric polymorphic

) :: EQ a => a -> a -> Bool
=y =mnot (x /=y)

Listing 4: Ad-hoc polymorphism

*for bounded quantification

COMPUTER SCIENCE

Removing natural language from tasks

We design three alpha-rewrite operators to remove NL from the tasks:

e NL-Type: Int, Char, Bool, Eq, Ord...— T1, T2, T3, T4, T5...

e Type-Var: a, b, ¢, d, e...—tl, t2, t3, t4, t5...

* Binding: map, not, foldl, (+)...— fi, 2, £3, f4...
Implementation details:

e Operators have type Task -> Either Task Error.

* Operators are commutative and associative under composition [Kle65].

» Transformed tasks are alpha-equivalent to the original tasks.

COMPUTER SCIENCE

Construction pipeline and statistics

Task extractor Dependency solver Alpha-rewrite
W& packages on Hackage — [search dependencies — binding names
& functions from AST ® prepend types NL types & variabes

Figure 4: Pipeline to construct TF-Bench.

In total, TF-Bench has 188 tasks,

* 26.6% are monomorphic functions,

* 32.4% are parametric polymorphisms,

* and 41.0% are ad-hoc polymorphisms.
TF-Bench,, is the NL-free version of TF-Bench.

COMPUTER SCIENCE

Evaluation methodology

TF-Bench task

[y

N

g W

Ground-truth
type signarue

—>
S

Task generation
prompt

ﬁ@ﬁ

Type-def N Ground-truth
tatic analyzer w/ type definitions l

E
LA ED

LLM-inferenced
type signature

Proof template

G

Ipha-equiv
prover

Figure 5: Pipeline to evaluate LLMs on TF-Bench.

. Otherwise we analyze what the error is.

. If the proof compiles, the two signatures are equivalent.

. We prompt the LLMs with tasks to generated a type signature.

. We use the ground-truth signature to add definitions for new types.

. We construct a proof using the ground-truth and generated signatures.

COMPUTER SCIENCE

Experimental results

COMPUTER SCIENCE

Research questions

We ask the following questions around program semantics reasoning:
1. What is the performance gap of LLMs on TF-Bench and TF-Benchy,,e?
2. How effective is TTC of models after reinforcement learning?

3. Can fine-tuning on math/code improve reasoning?

COMPUTER SCIENCE

RQ1. The performance gap

Model Version TTC Acc Accpye RS
Claude-3.5-sonnet 2024-06-20 X 85.46 48.97 57.3
Claude-3.7-sonnet 2025-02-19 v 90.42 55.85 61.77
GPT-O3-mini 2025-01-31 v 90.43 48.40 53.52
GPT-O3 2025-04-16 v/ 81.91 52.66 64.29
DeepSeek-V3 2025-03-25 X 83.51 43.62 52.23
DeepSeek-R1 2025-01-20 v/ 86.70 44.15 50.92
30B-A3B vV 81.38 40.43 49.68
Qwen3s 32B vV 87.94 43.09 49.00
235B-A22B-FP8 v 85.11 44.15 51.87

Table 1: Main evaluation results. RS(m) = AcGure(m)/Acc(m).

COMPUTER SCIENCE

RQ2. The effectiveness of TTC

Model TTC Acc Accpye RE
X 8o. .6
Qwen3-235B-FP8 49 3554 1.37
vV 86.70 44.15
X 87. 6.81
Claude-3.7-sonnet 7774 3.41
vV 90.42 55.85
X 8.1 0.32
Gemini-2.5-flash 7819 303 3.90
v 83.51 51.06
Table 2: Reasoning effectiveness of top LLMs.
Accpure (mttc) - Accpure (m) Apure
RE(mttC: m) = =
Acc(my.) —Ace(m) A

COMPUTER SCIENCE

RQ3: Fine-tuning on math/code I

FT Corpus Base Model (FT Model) Size Acc FT Acc A Accpyre FT ACCpyre Dpure

Gemma (CodeGemma) 7B 48.904 53.19 + 4.25 7.45 12.23 + 4.78
DeepSeek-V2 (-Coder) 16B 29.79 55.32 + 25.53 7.98 15.96 + 7.98
236B 38.30 80.85 + 42.55 11.17 36.70 + 25.53

Code Mistral (Codestral) 22B 61.17 63.30 +2.13 19.68 11.17 -8.51
1.5B 30.32 36.70 + 6.38 6.91 9.04 + 2.13

Qwenz2.5 (-Coder) 7B 65.06 61.17 - 4.79 21.28 21.28 0.00

32B 74.47 82.45 + 7.98 36.17 31.91 - 4.26

Mistral (Mathstral) 7B 45.21 47.34 + 2.13 7.99 15.43 + 7.44

Math 7B 40.43 43.09 +2.66 3.19 10.64 + 7.45

Qwen2 (-Math)
72B 63.83 71.28 + 7.45 21.81 33.51 + 11.7

Table 3: Result comparison of fine-tuning. FT Corpus: the corresponding fine-tuning
corpus. A, Ap,..: absolute increase in accuracy after fine-tuning.

COMPUTER SCIENCE

RQ3: Fine-tuning on math/code II

¢ fine-tuning on code sometimes leads to a - decline in performance,

e fine-tuning on math consistently results in performance + gains,

* fine-tuning on code exhibit smaller or negative improvements on
TF-Bench i.,e. RE<O,

pure>
* the same models fine-tuned on math demonstrate greater improvements
on TF-Benchy,, i.e. 7 > 1, although not as significant as TTC.

Observation: Fine-tuning on math might enhance the models’ reasoning
ability, which also translates effectively tasks related to code.

COMPUTER SCIENCE

References

COMPUTER SCIENCE

[Wei+22]

[Ope24]

[Dee+25]

[Mue+25]

[Jai+25]

Jason Wei et al. “Chain of Thought Prompting Elicits Reasoning in
Large Language Models”. In: Advances in Neural Information
Processing Systems. 2022. URL:
https://openreview.net/forum?id=_VjQlMeSB_J.

OpenAl OpenAl o1 System Card. 2024. URL:
https://cdn.openai.com/ol-system-card.pdf.

DeepSeek-Al et al. DeepSeek-R1: Incentivizing Reasoning Capability in
LLMs via Reinforcement Learning. 2025. arXiv: 2501.12948 [cs.CL].
URL: https://arxiv.org/abs/2501.12948.

Niklas Muennighoff et al. “s1: Simple test-time scaling”. In: arXiv
preprint arXiv:2501.19393 (2025).

Naman Jain et al. “LiveCodeBench: Holistic and Contamination Free
Evaluation of Large Language Models for Code”. In: The Thirteenth
International Conference on Learning Representations. 2025. URL:
https://openreview.net/forum?id=chfJJYC3iL.

COMPUTER SCIENCE

https://openreview.net/forum?id=_VjQlMeSB_J
https://cdn.openai.com/o1-system-card.pdf
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=chfJJYC3iL

[Jim+24]

[Wad1s]

[Cur34]

[AD22]

Carlos E Jimenez et al. “SWE-bench: Can Language Models Resolve
Real-world Github Issues?” In: The Twelfth International Conference
on Learning Representations. 2024. URL:
https://openreview.net/forum?id=VTF8yNQM66.

Philip Wadler. “Propositions as types”. In: Commun. ACM 58.12 (Nov.
2015), pPp- 75-84. ISSN: 0001-0782. DOI: 10.1145/2699407. URL:
https://doi.org/10.1145/2699407.

H. B. Curry. “Functionality in Combinatory Logic”. In: Proceedings of
the National Academy of Sciences 20.11 (1934), pp. 584—590. DOTI:
10.1073/pnas.20.11.584. eprint:
https://www.pnas.org/doi/pdf/10.1073/pnas.20.11.584.
URL:
https://www.pnas.org/doi/abs/10.1073/pnas.20.11.584.

Toufique Ahmed and Premkumar Devanbu. “Multilingual training for
software engineering”. In: Proceedings of the 44th International
Conference on Software Engineering. ICSE '22. ACM, May 2022. DOI:
10.1145/3510003.3510049. URL:
http://dx.doi.org/10.1145/3510003.3510049.

COMPUTER SCIENCE

https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.1145/2699407
https://doi.org/10.1145/2699407
https://doi.org/10.1073/pnas.20.11.584
https://www.pnas.org/doi/pdf/10.1073/pnas.20.11.584
https://www.pnas.org/doi/abs/10.1073/pnas.20.11.584
https://doi.org/10.1145/3510003.3510049
http://dx.doi.org/10.1145/3510003.3510049

[Yan+22]

[Liu+23]

[Mir+24]

Zhou Yang, Jieke Shi, Junda He, and David Lo. “Natural attack for
pre-trained models of code”. In: Proceedings of the 44th International
Conference on Software Engineering. ICSE ’22. Pittsburgh,
Pennsylvania: Association for Computing Machinery, 2022,

PP. 1482—1493. ISBN: 9781450392211. DOI:
10.1145/3510003.3510146. URL:
https://doi.org/10.1145/3510003.3510146.

Shangqing Liu, Bozhi Wu, Xiaofei Xie, Guozhu Meng, and Yang Liu.
“Contrabert: Enhancing code pre-trained models via contrastive
learning”. In: 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE). IEEE. 2023, pp. 2476—2487.

Iman Mirzadeh et al. GSM-Symbolic: Understanding the Limitations of
Mathematical Reasoning in Large Language Models. 2024. arXiv:
2410.05229 [cs.LG]. URL:
https://arxiv.org/abs/2410.05229.

COMPUTER SCIENCE

https://doi.org/10.1145/3510003.3510146
https://doi.org/10.1145/3510003.3510146
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229

[Jia+24]

[Gul+24]

[Jono3s]

[Kle65]

Bowen Jiang et al. “A Peek into Token Bias: Large Language Models
Are Not Yet Genuine Reasoners”. In: Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing.
Miami, Florida, USA: Association for Computational Linguistics, Nov.
2024, PP- 4722—4756. DOI: 10.18653/v1/2024.emnlp-main.272.
URL: https://aclanthology.org/2024.emnlp-main.272/.

Aryan Gulati et al. “Putnam-AXIOM: A Functional and Static
Benchmark for Measuring Higher Level Mathematical Reasoning”. In:
The 4th Workshop on Mathematical Reasoning and Al at NeurIPS’24.
2024. URL: https://openreview.net/forum?id=YXnwlZeOyf.

Simon Peyton Jones. Haskell 98 language and libraries: the revised
report. Cambridge University Press, 2003.

H. Kleisli. “Proc. Amer. Math. Soc. 16 (1965), 544-546”. In:
Proceedings of the American Mathematical Society 16 (1965),

PP. 544-546. ISSN: 0002-9939. DOI:
10.1090/50002-9939-1965-0177024-4.

COMPUTER SCIENCE

https://doi.org/10.18653/v1/2024.emnlp-main.272
https://aclanthology.org/2024.emnlp-main.272/
https://openreview.net/forum?id=YXnwlZe0yf
https://doi.org/10.1090/S0002-9939-1965-0177024-4

Backup slides

COMPUTER SCIENCE

Formal reasoning in deductive systems

Definition
A deductive system (or inference system) is specified by >
* a collection of judgments/assertions/validations,

* a collection of steps (inference rules) that move from validation to
validation, and finally to the proposition.

Natural deduction is a deductive system that reason from assumptions.

*This is not a completely standard definition, but is an illustrative description.

COMPUTER SCIENCE

Effects of different rewrite operators

T
Models

80] Il Ol-preview
[Claude-3.5-sonnet
[GPT-4-turbo
~60 —
N
g I
[}
o
2 40
o
<
20
0 Pure

Applied Rewrite Operator

None NL-Ty Ty-Var Binding

Figure 6: Accuracy on TF-Bench with different rewrite operators. None: the original
TF-Bench. NL-Ty: rewriting NL types. Ty-Var: rewriting type variables. Binding:

rewriting binding names. Pure: TF-Bench,,.

COMPUTER SCIENCE

	Background
	Design of TF-Bench
	Experimental results
	References
	References
	Backup slides

