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Test-time compute: let’s think step by step

* Chain-of-Thought prompting [Wei+22] enables reasoning in LLMs.
* CoT decomposes multi-step problems into intermediate (reasoning) steps.

* CoT becomes a training paradigm [Ope24; Dee+25; Mue+25].

(How many r in raspberry? Question) ° Pre-trail’led knOWIedge . I‘uleS

“Let's break down the process of counting the letter 'r" in the\l
word "raspberry” ...

, . In-context knowledge + prompt:
* First letter: 'r' - Thisis an 'r', count = 1. » K
* Second letter: 'a' - Not an 'r', count remains 1 ... aSSUHlptIOI'lS/hypOtheseS

* Sixth letter: ‘e’ - Not an 'r', count remains 1.
CoT: reasoning

* Seventh letter: 'r' - This is an 'r', count = 2.
* Eighth letter: 'y’ - Not an 'r', count remains 2 ...
The number of 'r's in "raspberry" is 2.

Wait, let's re-read the question carefully. It asks "How many r .
in raspberry?" ..,*rra—s'prb—e—r—{—y.,.*Firsl'r'... e — step 1: lemma 1
\Second 'r' ... *Third r' ... Count =3 ... Reasoning trace/, _ Step 2: 1emma 2
’/My initial answer of 2 was incorrect due to a quick reading of\‘ ’
‘«\El?e word. Final Answer: The final answer is@ Response / -
Figure 1: TTC example [Mue+25]. * Response: a proposition
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The evaluation gap

Reasoning LLMs are evaluated on math and coding:
e Mathematical reasoning

— AIME 2024: high school math competition
— MATH-500: math problem solving

* Code generation

— LiveCodeBench [Jai+25]: LeetCode, online coding contests
— SWE-Bench [Jim+24]: patch generation

What is missing in the idea of reasoning for code?
* program-centric deductive system

e — reason about structural logic behind programs
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Propositions as types

* Types in programming = propositions in logic [Wad15].

* A function type A — B = the proposition A = B [Cur34].

* Type inference is natural deduction.

not :: Bool -> Bool
() :: (b =>¢) -> (a =>b) ->a->c
span :: (a -> Bool) -> [a]l -> ([al, [al)

break p = span (not . p)
-- complete the following type signature
for “break’

oS RN

7 |break :: (a -> Bool) -> [a] -> ([al,[al)
L

Listing 1: Example task for the break
function

‘will have the same return type as

Figure 2: Claude 3.7’ extended thinking
mode on the task in Listing 1, V.
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But wait, are LLMs really reasoning about
program semantics?

Input transformations lead to a significant performance drop:
* Semantic-preserving code transformations [AD22; Yan+22; Liu+23].

e Perturbations on math problems [Mir+24; Jia+24; Gul+24].

1 £2 :: (t1 -> T1) -> [t1] -> ([t1], [t1])
2 | £3 :: T1 -> T1 This means 3 in the context of 74 s
3 f4 :: (t1 -> t2) -> (3 -> tl1) -> t3->t2 £
4 or equivalently
5 | f1 p = £2 (£3 “f4" p)
6 -- complete the following type signature
for “f1°
7 [ £t s (81 > T -> [81] -> ([x1], [t1]) |

L |

Listing 2: The task in 1 after alpha-rewrite

Figure 3: Claude 3.7’ extended thinking
mode on the task in Listing 2, V.
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Design of TF-Bench
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Benchmark construction

We use the Haskell Prelude [Jono3] for the following reasons:
. A formal deductive type system: System F (and System F_ ').
. The type signature is concise and is decoupled from the function body.

. Type equivalence is formally verifiable (w/ signature only).

A W N R

. Haskell is the most popular language that meets these conditions.

map :: (a -> b) -> [a]l -> [b]
map £ [] = []
map f (x:xs) = f x : map f xs

w N R

Listing 3: Parametric polymorphic

) :: EQ a => a -> a -> Bool
=y =mnot (x /=y)

Listing 4: Ad-hoc polymorphism

*for bounded quantification
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Removing natural language from tasks

We design three alpha-rewrite operators to remove NL from the tasks:

e NL-Type: Int, Char, Bool, Eq, Ord...— T1, T2, T3, T4, T5...

e Type-Var: a, b, ¢, d, e...—tl, t2, t3, t4, t5...

* Binding: map, not, foldl, (+)...— fi, 2, £3, f4...
Implementation details:

e Operators have type Task -> Either Task Error.

* Operators are commutative and associative under composition [Kle65].

» Transformed tasks are alpha-equivalent to the original tasks.
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Construction pipeline and statistics

Task extractor Dependency solver Alpha-rewrite
W& packages on Hackage — [ search dependencies — binding names
& functions from AST ® prepend types NL types & variabes

Figure 4: Pipeline to construct TF-Bench.

In total, TF-Bench has 188 tasks,

* 26.6% are monomorphic functions,

* 32.4% are parametric polymorphisms,

* and 41.0% are ad-hoc polymorphisms.
TF-Bench,, is the NL-free version of TF-Bench.
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Evaluation methodology

TF-Bench task
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Figure 5: Pipeline to evaluate LLMs on TF-Bench.

. Otherwise we analyze what the error is.

. If the proof compiles, the two signatures are equivalent.

. We prompt the LLMs with tasks to generated a type signature.

. We use the ground-truth signature to add definitions for new types.

. We construct a proof using the ground-truth and generated signatures.
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Experimental results
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Research questions

We ask the following questions around program semantics reasoning:
1. What is the performance gap of LLMs on TF-Bench and TF-Benchy,,e?
2. How effective is TTC of models after reinforcement learning?

3. Can fine-tuning on math/code improve reasoning?
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RQ1. The performance gap

Model Version TTC  Acc  Accpye RS
Claude-3.5-sonnet 2024-06-20 X 85.46  48.97 57.3
Claude-3.7-sonnet 2025-02-19 v 90.42 55.85 61.77
GPT-O3-mini 2025-01-31 v 90.43 48.40 53.52
GPT-O3 2025-04-16 v/ 81.91 52.66 64.29
DeepSeek-V3 2025-03-25 X 83.51 43.62 52.23
DeepSeek-R1 2025-01-20 v/ 86.70 44.15 50.92
30B-A3B vV 81.38 40.43 49.68
Qwen3s 32B vV 87.94 43.09  49.00
235B-A22B-FP8 v 85.11 44.15 51.87

Table 1: Main evaluation results. RS(m) = AcGure(m)/Acc(m).
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RQ2. The effectiveness of TTC

Model TTC Acc  Accpye RE
X  8o. .6
Qwen3-235B-FP8 49 3554 1.37
vV 86.70 44.15
X 87. 6.81
Claude-3.7-sonnet 7774 3.41
vV 90.42 55.85
X 8.1 0.32
Gemini-2.5-flash 7819 303 3.90
v 83.51 51.06
Table 2: Reasoning effectiveness of top LLMs.
Accpure ( mttc) - Accpure ( m ) Apure
RE(mttC: m) = =
Acc(my.) —Ace(m) A
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RQ3: Fine-tuning on math/code I

FT Corpus Base Model (FT Model) Size  Acc  FT Acc A Accpyre  FT ACCpyre  Dpure

Gemma (CodeGemma) 7B 48.904 53.19 + 4.25 7.45 12.23 + 4.78
DeepSeek-V2 (-Coder) 16B  29.79  55.32 + 25.53 7.98 15.96 + 7.98
236B 38.30 80.85 + 42.55 11.17 36.70 + 25.53

Code Mistral (Codestral) 22B  61.17 63.30 +2.13  19.68 11.17 -8.51
1.5B  30.32 36.70 + 6.38 6.91 9.04 + 2.13

Qwenz2.5 (-Coder) 7B 65.06 61.17 - 4.79 21.28 21.28 0.00

32B  74.47 82.45 + 7.98 36.17 31.91 - 4.26

Mistral (Mathstral) 7B 45.21  47.34 + 2.13 7.99 15.43 + 7.44

Math 7B 40.43 43.09 +2.66  3.19 10.64 + 7.45

Qwen2 (-Math)
72B  63.83 71.28 + 7.45 21.81 33.51 + 11.7

Table 3: Result comparison of fine-tuning. FT Corpus: the corresponding fine-tuning
corpus. A, Ap,..: absolute increase in accuracy after fine-tuning.
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RQ3: Fine-tuning on math/code II

¢ fine-tuning on code sometimes leads to a - decline in performance,

e fine-tuning on math consistently results in performance + gains,

* fine-tuning on code exhibit smaller or negative improvements on
TF-Bench i.,e. RE<O,

pure>
* the same models fine-tuned on math demonstrate greater improvements
on TF-Benchy,, i.e. 7 > 1, although not as significant as TTC.

Observation: Fine-tuning on math might enhance the models’ reasoning
ability, which also translates effectively tasks related to code.
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Formal reasoning in deductive systems

Definition
A deductive system (or inference system) is specified by >
* a collection of judgments/assertions/validations,

* a collection of steps (inference rules) that move from validation to
validation, and finally to the proposition.

Natural deduction is a deductive system that reason from assumptions.

*This is not a completely standard definition, but is an illustrative description.
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Effects of different rewrite operators

T
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80 ] Il Ol-preview
[ Claude-3.5-sonnet
[ GPT-4-turbo
~60 —
N
g I
[}
o
2 40
o
<
20
0 Pure

Applied Rewrite Operator

None NL-Ty Ty-Var Binding

Figure 6: Accuracy on TF-Bench with different rewrite operators. None: the original
TF-Bench. NL-Ty: rewriting NL types. Ty-Var: rewriting type variables. Binding:

rewriting binding names. Pure: TF-Bench,,.
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